Microcontaminants place a considerable burden on our water courses, but removing them from wastewater requires considerable technical resources. Now, ETH researchers have developed an approach that allows the efficient removal of these problematic substances.
In our everyday lives, we all use a multitude of chemical substances, including cosmetics, medications, contraceptive pills, plant fertilisers and detergents—all of which help to make our lives easier. However, the use of such products has an adverse effect on the environment, because many of them cannot be fully removed from wastewater at today’s water treatment plants. As micropollutants, they ultimately end up in the environment, where they place a burden on fauna and flora in our water courses.
As part of a revision of the Waters Protection Act, parliament therefore decided in 2014 to fit an additional purification stage to selected water treatment plants by 2040 with a view to removing microcontaminants. Although the funding for this has in principle been secured, the project presents a challenge for plant operators because it is only possible to remove the critical substances using complex procedures, which are typically based on ozone, activated carbon or light.

Image Credit: phys.org
News This Week
Biopharma Creates New Generation LNPs In A Run For A More Efficient COVID-19 Vaccine
The COVID-19 pandemic highlighted the need for fast-produced and adaptable vaccines that could be equally distributed around the world. Developing an efficient mRNA vaccine that is effective, thermostable, and has fewer side effects strongly [...]
Researchers Assess How Well Machine Learning Predicts Nanotoxicology
Engineered nanomaterials (ENMs) have found their applications in various technologies and consumer products. Manipulating chemicals at the nanoscale range introduces unique characteristics to these materials and makes them desirable for technological applications. With the [...]
Smart nanoparticle shows that intermittent fasting may protect the heart from damage during chemotherapy
Although chemotherapy can be a lifesaving treatment for patients with cancer, some of these medications can damage the heart. A team led by researchers at Massachusetts General Hospital (MGH) recently developed a nanoparticle probe [...]
From nasal vaccines to pills: the next defences against Covid
When the autumn booster programme begins next month, many people are likely to receive Moderna’s new bivalent vaccine, designed to protect against the original Covid strain and the more transmissible Omicron variant. As Covid continues [...]
Novel design for nanoparticles that train immune cells into fighting cancer
Scientists of the department of Advanced Organ Bioengineering and Therapeutics (TechMed Centre) recently published a novel cancer immune therapy in the scientific journal Nature Communications ("Cancer immune therapy using engineered ‛tail-flipping’ nanoliposomes targeting alternatively activated macrophages"). [...]
Smart contact lenses for cancer diagnostics and screening
Scientists from the Terasaki Institute for Biomedical Innovation (TIBI) have developed a contact lens that can capture and detect exosomes, nanometer-sized vesicles found in bodily secretions which have the potential for being diagnostic cancer [...]
Novel Nanoplatform Found Effective Against Esophageal Cancer
Among the total number of deaths caused by different types of cancer, esophageal cancer is the sixth most significant. Several conventional treatments, such as radiotherapy, chemotherapy, and surgery have multiple side effects, including off-target [...]
Stem Cell Membrane-Coated Nanoparticles in Tumor Therapy
Cell membrane-coated nanoparticles, applied in targeted drug delivery strategies, combine the intrinsic advantages of synthetic nanoparticles and cell membranes. Although stem cell-based delivery systems were highlighted for their targeting capability in tumor therapy, inappropriate [...]
Leave A Comment