Antibacterial resistance occurs when antibiotics fail to treat bacterial infections. This incidence is considered one of the top global health threats, stemming from the misuse or overuse of antibiotics in humans and animals.1
The global impact of antibacterial resistance
Bacterial infections are common and can impact various organs and tissues in the human body.² Clinicians typically prescribe antibiotics to treat these infections; however, many bacteria have developed resistance to these treatments, including those considered the “last line of defense,” such as vancomycin and polymyxin. The prevalence of multi-drug-resistant (MDR) bacteria is well-documented.
In 2015, the World Health Organization initiated the Global Antimicrobial Resistance and Use Surveillance System (GLASS) to monitor antimicrobial resistance globally.³ The 2022 GLASS data showed a significant rise in antibiotic resistance, reducing the effectiveness of commonly used antibiotics against widespread bacterial infections.
Methicillin-resistant Staphylococcus aureus (MRSA) and third-generation cephalosporin-resistant Escherichia coli (E. coli) have been reported in 76 countries. In 2020, one in five individuals was diagnosed with urinary tract infections caused by E. coli, which showed reduced responsiveness to commonly prescribed antibiotics, including ampicillin, fluoroquinolones, and co-trimoxazole. Additionally, Klebsiella pneumoniae, an intestinal bacterium, exhibited increased antibiotic resistance.³
The Organization for Economic Cooperation and Development (OECD) projects a twofold increase in resistance to last-resort antibiotics by 2035. These findings emphasize the urgent need for innovative strategies to combat antibacterial resistance and underscore the importance of expanding global surveillance efforts.
Drug-design strategies to overcome antibacterial resistance
Most currently available antibiotics are derived from discoveries made before 2010. Given the increasing antibacterial resistance to many common antibiotics, there is an urgent need to develop new antibacterial agents that can effectively target a broad range of bacterial strains. Below are some of the key innovative drug-design strategies being explored to address bacterial resistance.
Antimicrobial Peptides (AMPs)
A range of AMPs have been designed to combat bacterial resistance.⁴ For instance, the antibiofilm peptide SAAP-148, derived from the parent peptide LL-37, has shown high efficacy against MDR pathogens.⁵ Proline-rich AMPs (PrAMPs), with multiple intracellular targets and low toxicity, are promising candidates, especially for eliminating Gram-negative pathogens. Commercially available peptide antimicrobials, such as polymyxin and short bacillus peptide, are currently used for therapeutic purposes.
Adjuvants
Efflux pump inhibitors (EPIs) and enzymatic inhibitors are commonly used as adjuvants to enhance antibiotic efficacy.⁶ For example, β-lactamase inhibitors are combined with β-lactam antibiotics to prevent the hydrolysis of the antibiotic’s lactam ring, preserving its structural integrity and antibacterial effectiveness.
Efflux pumps contribute significantly to both intrinsic and acquired bacterial resistance.⁷ Current research focuses on identifying and inhibiting EPIs to restore the potency of existing antibiotics. For instance, NorA, a chromosomally encoded multidrug efflux pump in MRSA, can be inhibited with synthetic antigen-binding fragments (Fabs).⁸
Nanomaterials
Metal-based nanomaterials, including zinc, silver, and gold, are utilized for bacterial infection detection and treatment. The antibacterial properties of these nanomaterials depend on their shape, size, and composition. Silver nanoparticles are widely used in biosensing, drug delivery, and antimicrobial wound dressings. Recent research highlights the effectiveness of gold nanoparticles against antibiotic-resistant bacteria.⁹
Cationic polymers, such as chitosan, polyquaternary ammonium salts (PQASs), and polyethyleneimine (PEI), possess intrinsic antibacterial properties.¹⁰ These positively charged materials interact with negatively charged bacterial surfaces, damaging bacterial cell walls or membranes and leading to bacterial cell death.
Phytochemicals
Plants produce secondary metabolites with antibacterial properties, such as phenols, coumarin alkaloids, and organosulfur compounds found in seeds, roots, leaves, stems, flowers, and fruits.¹¹ These compounds are promising candidates for addressing antibacterial resistance.
Plant extracts and essential oils are under study for their potential to modify bacterial antibiotic resistance. Mechanistically, secondary metabolites inhibit efflux pumps, biofilm synthesis, bacterial cell wall synthesis, and bacterial physiology, modulating antibiotic susceptibility. Studies show that alkaloids and phenolic compounds can inhibit the efflux pumps in Staphylococcus aureus, E. coli, and MRSA.
RNA silencing
RNA silencing, a natural bacterial gene regulation mechanism, involves complementary cis and trans sequences that interact with regulatory regions on mRNA (antisense sequences). Synthetic antisense sequences can be designed to inhibit the translation of resistance-associated enzymes.¹²
CRISPR-Cas system
The CRISPR-Cas system (clustered regularly interspersed short palindromic repeats-associated protein) is an adaptive immune system in bacteria, protecting against viruses, phages, and foreign genetic material.¹³
As a genetic engineering tool, CRISPR-Cas can selectively target and modify bacterial genomes, potentially reducing or eliminating antibiotic resistance. This strategy shows promise in treating MDR infections.¹⁴
Phage therapy
Although phage therapy has been available for decades, its use declined with the advent of antibiotics. The recent rise in antibiotic resistance has reignited interest in phage therapy. For example, phage therapy successfully treated a cystic fibrosis patient infected with drug-resistant Mycobacteroides abscessus.¹⁵ Bacteriophages have also shown efficacy in treating elderly patients with S. aureus prosthetic joint infections.¹⁶
Drug delivery systems
Drug delivery systems (DDSs) increase antibiotic biodistribution and bioavailability. This strategy can effectively reduce antibiotic resistance and prolong novel antibiotics’ lifespan. Scientists adopted a “Trojan horse” strategy in designing and developing DDSs.
This strategy entails merging antibacterial agents with different carriers, such as exosomes, liposomes, erythrocytes, self-assembled peptides, and polymers. By targeting the unique microenvironment of infected tissue or via external guidance, DDSs enable drug release at the specific site.16
Future research outlook
The availability of various antibiotic types resulted in the development of complex mechanisms of resistance, particularly the emergence of MDR bacteria. To combat the situation, scientists are focused on uncovering the bactericidal mechanism of antibiotics and the mechanism of bacterial resistance.
The advancements in material science, nanotechnology, and gene editing tools have presented multiple opportunities for this strand of research. DDS technology has also exhibited immense potential in helping overcome bacterial resistance in the future.
References
- Mancuso G, et al. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens. 2021;10(10):1310. doi: 10.3390/pathogens10101310.
- Doron S, Gorbach SL. Bacterial Infections: Overview. International Encyclopedia of Public Health. 2008:273–82. doi: 10.1016/B978-012373960-5.00596-7.
- Antimicrobial resistance. World Health Organization; https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. 2023; Assessed on October 5, 2024.
- Xuan J, et al. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resistance Updates. 2023; 68, 100954. doi.org/10.1016/j.drup.2023.100954
- Shi J. et al. The antimicrobial peptide LI14 combats multidrug-resistant bacterial infections. Commun Biol. 2022;5, 926. doi.org/10.1038/s42003-022-03899-4
- El-Khoury C, et al. The role of adjuvants in overcoming antibacterial resistance due to enzymatic drug modification. RSC Med Chem. 2022;13(11):1276-1299. doi: 10.1039/d2md00263a.
- Gaurav A, et al. Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors. Microbiology (Reading). 2023;169(5):001333. doi: 10.1099/mic.0.001333.
- Brawley DN, et al. Structural basis for inhibition of the drug efflux pump NorA from Staphylococcus aureus. Nat Chem Biol. 2022;18(7):706-712. doi: 10.1038/s41589-022-00994-9.
- Rizvi SMD, et al. Antibiotic-Loaded Gold Nanoparticles: A Nano-Arsenal against ESBL Producer-Resistant Pathogens. Pharmaceutics. 2023;15(2):430. doi: 10.3390/pharmaceutics15020430.
- Carmona-Ribeiro AM, de Melo Carrasco LD. Cationic antimicrobial polymers and their assemblies. Int J Mol Sci. 2013;14(5):9906-46. doi: 10.3390/ijms14059906.
- Ashraf MV, et al. Phytochemicals as Antimicrobials: Prospecting Himalayan Medicinal Plants as Source of Alternate Medicine to Combat Antimicrobial Resistance. Pharmaceuticals. 2023; 16(6):881. doi.org/10.3390/ph16060881
- Jani S, et al. Silencing Antibiotic Resistance with Antisense Oligonucleotides. Biomedicines. 2021;9(4):416. doi: 10.3390/biomedicines9040416.
- Xu Y, Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J. 2020;18:2401-2415. doi: 10.1016/j.csbj.2020.08.031.
- Tao S, et al. The Application of the CRISPR-Cas System in Antibiotic Resistance. Infect Drug Resist. 2022;15:4155-4168. doi: 10.2147/IDR.S370869.
- Recchia D, et al. Mycobacterium abscessus Infections in Cystic Fibrosis Individuals: A Review on Therapeutic Options. Int J Mol Sci. 2023;24(5):4635. doi: 10.3390/ijms24054635.
- Yao J, et al. Recent Advances in Strategies to Combat Bacterial Drug Resistance: Antimicrobial Materials and Drug Delivery Systems. Pharmaceutics. 2023;15(4):1188. doi: 10.3390/pharmaceutics15041188.
News
Scientists reveal how exercise protects the brain from Alzheimer’s
Researchers at UC San Francisco have identified a biological process that may explain why exercise sharpens thinking and memory. Their findings suggest that physical activity strengthens the brain's built in defense system, helping protect [...]
NanoMedical Brain/Cloud Interface – Explorations and Implications. A new book from Frank Boehm
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]
Deadly Pancreatic Cancer Found To “Wire Itself” Into the Body’s Nerves
A newly discovered link between pancreatic cancer and neural signaling reveals a promising drug target that slows tumor growth by blocking glutamate uptake. Pancreatic cancer is among the most deadly cancers, and scientists are [...]
This Simple Brain Exercise May Protect Against Dementia for 20 Years
A long-running study following thousands of older adults suggests that a relatively brief period of targeted brain training may have effects that last decades. Starting in the late 1990s, close to 3,000 older adults [...]
Scientists Crack a 50-Year Tissue Mystery With Major Cancer Implications
Researchers have resolved a 50-year-old scientific mystery by identifying the molecular mechanism that allows tissues to regenerate after severe damage. The discovery could help guide future treatments aimed at reducing the risk of cancer [...]
This New Blood Test Can Detect Cancer Before Tumors Appear
A new CRISPR-powered light sensor can detect the faintest whispers of cancer in a single drop of blood. Scientists have created an advanced light-based sensor capable of identifying extremely small amounts of cancer biomarkers [...]
Blindness Breakthrough? This Snail Regrows Eyes in 30 Days
A snail that regrows its eyes may hold the genetic clues to restoring human sight. Human eyes are intricate organs that cannot regrow once damaged. Surprisingly, they share key structural features with the eyes [...]
This Is Why the Same Virus Hits People So Differently
Scientists have mapped how genetics and life experiences leave lasting epigenetic marks on immune cells. The discovery helps explain why people respond so differently to the same infections and could lead to more personalized [...]
Rejuvenating neurons restores learning and memory in mice
EPFL scientists report that briefly switching on three “reprogramming” genes in a small set of memory-trace neurons restored memory in aged mice and in mouse models of Alzheimer’s disease to level of healthy young [...]
New book from Nanoappsmedical Inc. – Global Health Care Equivalency
A new book by Frank Boehm, NanoappsMedical Inc. Founder. This groundbreaking volume explores the vision of a Global Health Care Equivalency (GHCE) system powered by artificial intelligence and quantum computing technologies, operating on secure [...]
New Molecule Blocks Deadliest Brain Cancer at Its Genetic Root
Researchers have identified a molecule that disrupts a critical gene in glioblastoma. Scientists at the UVA Comprehensive Cancer Center say they have found a small molecule that can shut down a gene tied to glioblastoma, a [...]
Scientists Finally Solve a 30-Year-Old Cancer Mystery Hidden in Rye Pollen
Nearly 30 years after rye pollen molecules were shown to slow tumor growth in animals, scientists have finally determined their exact three-dimensional structures. Nearly 30 years ago, researchers noticed something surprising in rye pollen: [...]
How lipid nanoparticles carrying vaccines release their cargo
A study from FAU has shown that lipid nanoparticles restructure their membrane significantly after being absorbed into a cell and ending up in an acidic environment. Vaccines and other medicines are often packed in [...]
New book from NanoappsMedical Inc – Molecular Manufacturing: The Future of Nanomedicine
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
A Virus Designed in the Lab Could Help Defeat Antibiotic Resistance
Scientists can now design bacteria-killing viruses from DNA, opening a faster path to fighting superbugs. Bacteriophages have been used as treatments for bacterial infections for more than a century. Interest in these viruses is rising [...]
Sleep Deprivation Triggers a Strange Brain Cleanup
When you don’t sleep enough, your brain may clean itself at the exact moment you need it to think. Most people recognize the sensation. After a night of inadequate sleep, staying focused becomes harder [...]















