Among the many things global warming will be melting this century—sea ice, land glaciers and tourist businesses in seaside towns across the world—is permafrost. Lying underneath 15% of the northern hemisphere, permafrost consists of accumulating dead biomass that remains frozen, never having had a chance to release all its carbon.
As the surface and lower atmosphere warms from human enhancement of the greenhouse effect, crucial questions are how much permafrost will thaw and how much carbon will that release into the atmosphere?
It’s a question complicated by the many processes that take place in the carbon cycle. Now a new study using a process-based biogeochemical model combining the science with observational data suggests the majority of thawed permafrost carbon will remain sequestered in layers that have been frozen, but this will create a significant challenge to future climate change mitigation efforts if the thawing accelerates.
The work, by four scientists in China and one at Purdue University in the US, is published in the journal Earth’s Future.
Permafrost forms mostly where the annual average temperature is below the freezing point of water. If that average is below -5°C, the freezing can be permanent at today’s climate level. (It was much more extensive during the Last Glacial Maximum.)
Making this problem worse is warming amplification at the Earth’s poles—the fact that global warming isn’t evenly distributed over the surface of the globe but increases with latitude. For example, the Arctic has warmed nearly four times faster than has the global average since 1979.
Thawing permafrost would act as a positive feedback to warming—adding to global warming via emissions of carbon dioxide—with the amount depending on how much anthropogenic forcing of climate takes place. With about 1 trillion tons of permafrost ultimately vulnerable to global climate change, modeling its future is a complex business.
Researchers have been working at reducing the uncertainties in the process, which include differences in regional amounts of thawing (which can also undermine buildings and communities), a dearth of observational data in remote regions, changes in vegetation coverage (which may absorb some of the emitted carbon), unpredictable weather extremes and wildfires, and what the paper’s authors describe as “the complex and unique water, energy, carbon, and nutrient interactions among the atmosphere, plants, soils, frozen layers, and microbes.”
Most of all, the amount of carbon thawing permafrost will emit into the atmosphere depends on what socioeconomic path humanity takes into the future. (Meaning any model result is necessarily a projection based on assumed parameters, not a prediction.)
The team considered two established scenarios of the future, the so-called Shared Socioeconomic Pathways (SSPs)—one, SSP126 (earlier: RCP2.6), an optimistic scenario of the future that limits global warming to 2.0°C, and the other, SSP585 (RCP8.5), being the most extreme scenarios where fossil fuel use remains business as usual and provides the vast majority of the future’s energy.
It also incorporated profiles of soil organic carbon using data sets based on observations. After validating their model, they applied it to permafrost thaw in the Northern Hemisphere for the rest of this century.
The new model estimated the permafrost area for the Northern Hemisphere for 2010 to 2015 to be 14.4 million square kilometers, containing 563 gigatons (Gt) of carbon in the latter year. For the SSP126 scenario that limits warming to 2.0°C, the model determined that permafrost degradation would make 119 Gt of carbon available for decomposition by 2100 from soil that was permanently frozen, reducing the carbon in permafrost ecosystems by 3.4 Gt. For the extreme SSP585 scenario, 252 Gt of carbon would become available, reducing the same carbon ecosystem by 15 Gt of carbon.
However, the model found that only about 4% to 8% of this newly thawed carbon is expected to be released into the atmosphere by 2100, a fraction that is within a range estimated by experts in 2015. This implies a maximum of 10 Gt of carbon for the least impactful scenario and 20 Gt of carbon for the most extreme scenario.
For comparison, in 2023, humans emitted 11.3 Gt of carbon from burning fossil fuels, land use changes, raising cattle and other activities, about half of which stays in the atmosphere for years. At present there is 880 Gt of carbon in the atmosphere, 300 Gt of which has been added by humans.
So thawing permafrost does not, in this model, appear to be a serious problem this century. However, degradation of permafrost increases nitrogen availability in soil, as decomposing previously frozen organic matter releases nitrogen in forms plants can use, and nitrogen stored in deeper soil layers is mobilized.
This can significantly increase plant growth and the dynamics of ecosystems. This is a negative, though small, feedback to global warming—in this model by Liu and his team, permafrost thaw increased the nitrogen stock in vegetation by 10 and 26 million tons in the two scenarios, and the carbon stock in vegetation by 0.4 and 1.6 Gt of carbon in the respective scenarios.
While this carbon increase does not compensate for the carbon loss from degrading permafrost, such permafrost thaw has already led to significant changes in plant species composition and growth. Other changes are more complicated.
For warming to cease, human emissions must drop to zero—it’s not enough that they level off at a constant value. As long as warming continues, more and more permafrost will thaw, adding to mitigation challenges this century and larger feedback problems in the 2100s.
The largest uncertainties in warming are in high latitudes and high altitudes, and deeper complications like “abrupt thaw, root deepening and microbial colonization may accelerate the decomposition of this vast amount of thawed [soil organic carbon] in deep soils” the group writes, incorporating ever more nuances into the carbon and nitrogen cycles to better quantify carbon loss in permafrost soils.
As ever, the largest uncertainty will be the actions of man.
More information: L. Liu et al, The Fate of Deep Permafrost Carbon in Northern High Latitudes in the 21st Century: A Process‐Based Modeling Analysis, Earth’s Future (2024). DOI: 10.1029/2024EF004996
Journal information: Earth’s Future
News
Ultrasound-activated Nanoparticles Kill Liver Cancer and Activate Immune System
A new ultrasound-guided nanotherapy wipes out liver tumors while training the immune system to keep them from coming back. The study, published in Nano Today, introduces a biodegradable nanoparticle system that combines sonodynamic therapy and cell [...]
Magnetic nanoparticles that successfully navigate complex blood vessels may be ready for clinical trials
Every year, 12 million people worldwide suffer a stroke; many die or are permanently impaired. Currently, drugs are administered to dissolve the thrombus that blocks the blood vessel. These drugs spread throughout the entire [...]
Reviving Exhausted T Cells Sparks Powerful Cancer Tumor Elimination
Scientists have discovered how tumors secretly drain the energy from T cells—the immune system’s main cancer fighters—and how blocking that process can bring them back to life. The team found that cancer cells use [...]
Very low LDL-cholesterol correlates to fewer heart problems after stroke
Brigham and Women's Hospital's TIMI Study Group reports that in patients with prior ischemic stroke, very low achieved LDL-cholesterol correlated with fewer major adverse cardiovascular events and fewer recurrent strokes, without an apparent increase [...]
“Great Unified Microscope” Reveals Hidden Micro and Nano Worlds Inside Living Cells
University of Tokyo researchers have created a powerful new microscope that captures both forward- and back-scattered light at once, letting scientists see everything from large cell structures to tiny nanoscale particles in a single shot. Researchers [...]
Breakthrough Alzheimer’s Drug Has a Hidden Problem
Researchers in Japan found that although the Alzheimer’s drug lecanemab successfully removes amyloid plaques from the brain, it does not restore the brain’s waste-clearing system within the first few months of treatment. The study suggests that [...]
Concerning New Research Reveals Colon Cancer Is Skyrocketing in Adults Under 50
Colorectal cancer is striking younger adults at alarming rates, driven by lifestyle and genetic factors. Colorectal cancer (CRC) develops when abnormal cells grow uncontrollably in the colon or rectum, forming tumors that can eventually [...]
Scientists Discover a Natural, Non-Addictive Way To Block Pain That Could Replace Opioids
Scientists have discovered that the body can naturally dull pain through its own localized “benzodiazepine-like” peptides. A groundbreaking study led by a University of Leeds scientist has unveiled new insights into how the body manages pain, [...]
GLP-1 Drugs Like Ozempic Work, but New Research Reveals a Major Catch
Three new Cochrane reviews find evidence that GLP-1 drugs lead to clinically meaningful weight loss, though industry-funded studies raise concerns. Three new reviews from Cochrane have found that GLP-1 medications can lead to significant [...]
How a Palm-Sized Laser Could Change Medicine and Manufacturing
Researchers have developed an innovative and versatile system designed for a new generation of short-pulse lasers. Lasers that produce extremely short bursts of light are known for their remarkable precision, making them indispensable tools [...]
New nanoparticles stimulate the immune system to attack ovarian tumors
Cancer immunotherapy, which uses drugs that stimulate the body’s immune cells to attack tumors, is a promising approach to treating many types of cancer. However, it doesn’t work well for some tumors, including ovarian [...]
New Drug Kills Cancer 20,000x More Effectively With No Detectable Side Effects
By restructuring a common chemotherapy drug, scientists increased its potency by 20,000 times. In a significant step forward for cancer therapy, researchers at Northwestern University have redesigned the molecular structure of a well-known chemotherapy drug, greatly [...]
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]















