In a research study published recently in the journal Agriculture, an electrolytic sensor based on the concentration of floral nano-ZnO and the identification of immune reaction was created for the high-sensitivity monitoring of Tenuazonic acid (TeA) in fruit and vegetables.
When comparing various morphologies, dimensions, and crystalline structures of nano-ZnO, the researchers discovered that floral nano-ZnO (ZnO NFs) with a hexagonal phase had the best surface area and conductance.
What is Tenuazonic Acid (TeA)?
When compared to other Alternaria chemicals, tenuazonic acid (TeA) exhibits a high level of toxic effects, including neurotoxicity and probable carcinogenic effects.
It may also cause cumulative harm when combined with other toxins, leading to acute poisoning.
TeA can be found in a variety of foods, including grains, peppercorns, vegetables, fruits, and even animal proteins, with levels of contamination varying from a few milligrams to thousands of milligrams.
TeA was included by the United States National Council for Occupational Health & Safety in 1979 due to its high contamination of farm products.
Figure 1. The SEM image of flower-shaped nano-ZnO (A) and brush-shaped nano-ZnO (B); XRD patterns of ZnO (C); FT-IR spectrum of amino-modified nano-ZnO (D). © Zhang, C. et al. (2022)
To date, enzyme-linked immunoassay (ELISA) and column chromatography spectroscopy have been the primary methods for detecting the carcinogen TeA.
However, since these traditional detection systems have significant drawbacks, such as being inconvenient, time-consuming, and having low susceptibility, enhancements in sensing methods of TeA are still needed.
Importance of ZnO Based Electrochemical Biosensors
In comparison to the approaches mentioned above, the electrochemical biosensor has been commonly regarded as a potent assessment technique with several advantages, including quick detection rate and mobile devices.
Recent research has focused on increasing its high specificity using a nanocomposite with a large surface area, great conductance, and superior photocatalytic characteristics.
Zinc oxide (ZnO) is a global semiconductor that may function as both a nanocomposite and a transistor. Because of its huge surface area, excellent durability, and superior cytocompatibility, it can offer much more redox potential for biorecognition components such as nucleic acid aptamers and monoclonal antibodies.
Since numerous microstructures of ZnO have been effectively implemented to biosensors to identify different bioactive molecules, it is essential to measure the impact of varying morphological features of ZnO on surface area and permeability to widen its implementation in delicate biosensors.
Figure 2. Cyclic voltametric characterization of constructing electrochemical immunosensor (A) Electrochemical impedance spectroscopy characterization of constructing electrochemical immunosensor (B) (a: bare Au; b: bare Au/ZnO; c: bare Au/ZnO/antibody; d: bare Au/ZnO/antibody/BSA; e: bare Au/ZnO/antibody/BSA/TeA). © Zhang, C. et al. (2022)
ZnO NFs as Biosensors for Detection of TeA
In this study, by carefully adjusting pH, response duration, activation time, and precipitator, ZnO with various morphologies, dimensions, and crystallinity was manufactured.
Because of the hard surface, three-dimensional structure, and numerous gaps on each nucleotide surface, the floral nanoscale ZnO has the highest load-bearing capacity.
Through an amidation process between the amino group of antigens and the carboxylate, the ZnO NFs were covalently bonded with TeA specific antibodies and subsequently anchored on a gold working electrode altered with 2-mercaptobenzoic acid (MBA).
Construction of Electrochemical TeA Sensor
A traditional three-electrode cell arrangement was used in which a gold wire acted as the electrode material, an Ag/AgCl electrode functioned as the reference electrode, and a Pt cable worked as the counter electrode.
The gold electrode was first soaked in a 1 percent MBA absolute ethanol, then maintained at 37 °C for 2 hours before being washed with distilled water and air-dried.
CV imaging and electrical resistance spectrometry were performed after each of the layers above had been modified.
The electrochemical behavior was investigated using a differentiated pulse voltammetry (DPV) test with a phase voltage of 4 mV, a frequency of 25 Hz, and an intensity of 25 mV.
Research Conclusion and Prospects
In conclusion, to overcome the high-loading issue of specific antibodies, the researchers created altered ZnO and floral nano-ZnO.
The effective production of Au/ZnO/antibody/BSA/TeA was validated by CV and EIS studies. Moreover, the electrolytic biosensor has good specificity and low resistance.
Sensitivity experiments revealed that it has a unique anti-interference capability against pollutants with a composition comparable to TeA.
TeA was effectively determined with a low detection limit using a straightforward, cost-effective, and pollution-free nano-ZnO, paving the way for the development of more economical and accurate biosensors for the identification of additional substances.
Figure 3. Selectivity of the biosensor detection of TeA (500 pg/mL) against the interference proteins: 50 ng/mL ALT, 50 ng/mL AME, 50 ng/mL TEN, and 50 ng/mL AOH. © Zhang, C. et al. (2022)

News
Annual blood test could detect cancer earlier and save lives
A single blood test, designed to pick up chemical signals indicative of the presence of many different types of cancer, could potentially thwart progression to advanced disease while the malignancy is still at an early [...]
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]
Brain-computer interface allows paralyzed users to customize their sense of touch
University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch. While exploring a digitally [...]
Scientists Flip a Gut Virus “Kill Switch” – Expose a Hidden Threat in Antibiotic Treatment
Scientists have long known that bacteriophages, viruses that infect bacteria, live in our gut, but exactly what they do has remained elusive. Researchers developed a clever mouse model that can temporarily eliminate these phages [...]
Enhanced Antibacterial Polylactic Acid-Curcumin Nanofibers for Wound Dressing
Background Wound healing is a complex physiological process that can be compromised by infection and impaired tissue regeneration. Conventional dressings, typically made from natural fibers such as cotton or linen, offer limited functionality. Nanofiber [...]
Global Nanomaterial Regulation: A Country-by-Country Comparison
Nanomaterials are materials with at least one dimension smaller than 100 nanometres (about 100,000 times thinner than a human hair). Because of their tiny size, they have unique properties that can be useful in [...]
Pandemic Potential: Scientists Discover 3 Hotspots of Deadly Emerging Disease in the US
Virginia Tech researchers discovered six new rodent carriers of hantavirus and identified U.S. hotspots, highlighting the virus’s adaptability and the impact of climate and ecology on its spread. Hantavirus recently drew public attention following reports [...]
Studies detail high rates of long COVID among healthcare, dental workers
Researchers have estimated approximately 8% of Americas have ever experienced long COVID, or lasting symptoms, following an acute COVID-19 infection. Now two recent international studies suggest that the percentage is much higher among healthcare workers [...]
Melting Arctic Ice May Unleash Ancient Deadly Diseases, Scientists Warn
Melting Arctic ice increases human and animal interactions, raising the risk of infectious disease spread. Researchers urge early intervention and surveillance. Climate change is opening new pathways for the spread of infectious diseases such [...]
Scientists May Have Found a Secret Weapon To Stop Pancreatic Cancer Before It Starts
Researchers at Cold Spring Harbor Laboratory have found that blocking the FGFR2 and EGFR genes can stop early-stage pancreatic cancer from progressing, offering a promising path toward prevention. Pancreatic cancer is expected to become [...]
Breakthrough Drug Restores Vision: Researchers Successfully Reverse Retinal Damage
Blocking the PROX1 protein allowed KAIST researchers to regenerate damaged retinas and restore vision in mice. Vision is one of the most important human senses, yet more than 300 million people around the world are at [...]