Nucleic acid-based medications such as mRNA vaccines offer tremendous potential for medicine and are opening up new therapeutic approaches. These active ingredients must be enclosed inside nanoparticles to ensure that they get to where they are needed inside the body’s cells.
The Fraunhofer Institute for Production Systems and Design Technology IPK and FDX Fluid Dynamix GmbH have worked together to develop a technology platform for the production of nanoparticles that can achieve particle quality and stability at levels previously out of reach: FDmiX, short for Fraunhofer Dynamic Mixing Technologies. Swiss chemical and pharmaceutical company Lonza has now licensed the technology for its own good manufacturing practice (GMP) production activities.
RNA and DNA, both nucleic acids, are not only found in cells; they can also be components of medications. One common example widely known from the coronavirus pandemic is mRNA vaccines.
Medical professionals the world over are very hopeful about nucleic acid-based active ingredients, which offer potential as therapies for diseases that were previously difficult to treat, including some forms of cancer. However, safely and effectively transporting these sensitive nucleic acids to the cells, where the messages they carry can be translated into proteins, has proven to be a significant challenge thus far.
A protective envelope is needed to get the sensitive active ingredient into the cells. These nanoparticles are produced using fluid mixing processes. Very thorough, rapid mixing is necessary to produce particles of the requisite quality. Impinging jet mixers (also known as T-mixers or Y-mixers) are available for industrial-scale applications. They enable high throughput, but at the expense of mixing quality.
Better, faster mixing
In the Fraunhofer Dynamic Mixing Technologies (FDmiX) platform, Fraunhofer IPK and FDX Fluid Dynamix GmbH have managed to bridge the gap between mixing quality and throughput. The FDmiX platform allows for consistently high mixing quality at any scale, from the lab right up to mass production. It has already successfully passed tests aimed at production of lipid and polymer nanoparticles and of nanoemulsions.
As extensive testing has shown, the mixing quality of the FDmiX technology platform is superior to the systems that have been available to date, enabling production of particles at previously unattainable levels of quality.
The system is also impressive in terms of its scaling capability, as encapsulation can take place with volume streams ranging from 5 ml/min to 1.5 l/min without affecting the particle properties.
Lonza, a global development and production partner to the pharmaceutical, biotech, and neutraceuticals markets, has licensed the patented FDmiX technology and is already using it.
“Human cells defend themselves against foreign genetic material. That’s why the mRNA active ingredients have to be enclosed inside nanoparticles. So the particles act as a protective envelope, encapsulating the substance until it has entered the cell inside the body,” says Christoph Hein, head of the Ultra- and High-precision Technology division at Fraunhofer IPK in Berlin.
To be able to produce the nanoparticles, the active ingredient dissolved in a buffer has to be mixed with another solution, such as a lipid solution. Once the two liquids have been combined, lipid nanoparticles are formed which in turn form a lipid envelope around the active ingredient.
“With the FDmiX platform, we can produce significantly smaller and more homogeneous particles and even adjust their size. FDmiX lets us produce mixtures of a previously unattainable level of homogeneity with very short mixing times. That’s relevant because the mixing quality not only determines the quality of the nanoparticles, but ultimately also how effective they are.”
Clever nozzle design leads to homogeneously mixed nanoparticles
But how can a high and consistent mixing quality be combined with throughput? The centerpiece of the FDmiX platform is an OsciJet nozzle from FDX Fluid Dynamix GmbH.
Inside the nozzle, a jet of liquid is positioned on one of the sides of the main chamber. Before leaving the nozzle, a small part of the jet is deflected into a side channel. At the end of the side channel, it meets the main jet again and pushes it to the other side. This causes the main jet to oscillate continuously from one side to the other at a high frequency.
In this way, the jet of lipid solution oscillating through the nozzle meets the stream of the mRNA active ingredient at a perpendicular angle, creating a homogeneous mixture with nanoparticles of uniform size.
In tests of conventional impinging mixers (also known as T-mixers or Y-mixers), by contrast, the lipid solution and mRNA active ingredient collide before flowing together through the same channel. This creates a dynamic vortex, resulting in inhomogeneous particles of lower quality.
“In encapsulation tests on mRNA in lipid nanoparticles using different mixers and flow rates, FDmiX generated smaller particles with significantly lower size distribution compared to a T-mixer at the same flow rate,” Hein explains.
In tests, the project partners produced nanoparticles about 10% to 20% smaller than those produced using a T-mixer. They also had significantly smaller size distribution and high encapsulation efficiency and particle integrity.
Large quantities of nanoparticles are needed during the clinical phase and the subsequent production stage. Here as well, the technology from Fraunhofer IPK and FDX Fluid Dynamix GmbH is impressive: The two project partners developed and tested mixers for various pressure and flow rates. The smallest mixers (FDmiX XS) can work at flow rates under 5 milliliters per minute, while the largest (FDmiX XL) can work at more than 1.5 liters per minute.
Broad range of applications for FDmiX nanoparticles
The nanoparticles produced in this way can be used for a wide range of applications, well beyond encapsulation of mRNA and stabilization of vaccines.
For example, this technology can also be used in cardiology for cardiac catheter coatings. When a balloon catheter is expanded during an examination, nanoparticles are absorbed into the arterial wall, preventing new deposits from forming there. This can help to prevent stenosis, or narrowing of the blood vessels.
Nanoparticles are also used in tumor therapy, and the molecules may also be helpful in treating neurodegenerative diseases such as Alzheimer’s and other forms of dementia.
Provided by Fraunhofer-Gesellschaft
News
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]
Nanoplastics with environmental coatings can sneak past the skin’s defenses
Plastic is ubiquitous in the modern world, and it's notorious for taking a long time to completely break down in the environment - if it ever does. But even without breaking down completely, plastic [...]
Chernobyl scientists discover black fungus feeding on deadly radiation
It looks pretty sinister, but it might actually be incredibly helpful When reactor number four in Chernobyl exploded, it triggered the worst nuclear disaster in history, one which the surrounding area still has not [...]
Long COVID Is Taking A Silent Toll On Mental Health, Here’s What Experts Say
Months after recovering from COVID-19, many people continue to feel unwell. They speak of exhaustion that doesn’t fade, difficulty breathing, or an unsettling mental haze. What’s becoming increasingly clear is that recovery from the [...]
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
Scientists Begin $14.2 Million Project To Decode the Body’s “Hidden Sixth Sense”
An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body’s internal organs. How does your brain recognize when it’s time to take a breath, when your blood pressure has [...]
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
AI Spots Hidden Signs of Disease Before Symptoms Appear
Researchers suggest that examining the inner workings of cells more closely could help physicians detect diseases earlier and more accurately match patients with effective therapies. Researchers at McGill University have created an artificial intelligence tool capable of uncovering [...]














