Over the past few years, hardware manufacturers have developed technologies that ought to make it possible for companies and governmental organizations to process sensitive data securely using shared cloud computing resources. Known as confidential computing, this approach protects sensitive data while it is being processed by isolating it in an area that is impenetrable to other users and even to the cloud provider. But computer scientists at ETH Zurich have now proven that it is possible for hackers to gain access to these systems and to the data stored in them.
The researchers ran two attack scenarios, both using what’s known as the interrupt mechanism, which temporarily disrupts regular processing—for instance to prioritize a different computing task. There are a total of 256 different interrupts, and each one triggers a specific sequence of programming commands.
“Interrupts are a marginal concern, and it appears that ensuring they have systematic safeguards in place has simply been overlooked,” says Shweta Shinde, Professor of Computer Science at ETH Zurich. Together with her Secure & Trustworthy Systems Group, Shinde identified the problematic vulnerabilities in the server hardware used by two leading manufacturers of computer chips, AMD and Intel.
Eavesdrop-proof smartphone project helps find the gaps
Shinde’s team uncovered the security gaps while examining the confidential computing technologies used in AMD and Intel processors. The researchers wanted to gain an in-depth understanding of how these processors function because they are working on an eavesdrop-proof smartphone based on confidential computing.
At the core of confidential computing is the trusted execution environment (TEE). The TEE is a hardware-based component that isolates applications while they are being run. Accessing the application memory is then possible only with an authorized code. This means the data is also protected from unauthorized access while it is being stored, unencrypted, in the working memory during processing. In the past, the only way to ensure such protection was to encrypt data while stored on the hard drive and during transmission.
Instability factor number one: Hypervisors
In the public cloud, applications are isolated using a TEE, specifically from what’s known as a hypervisor. Cloud providers use hypervisor software to manage resources ranging from hardware components to their customers’ virtual servers. Hypervisors are an important part of cloud services because they create the required flexibility, efficiency and security. In addition to managing and optimizing how the underlying hardware is used, they ensure that different users can work securely in separate areas of the same cloud without disturbing each other.
But the administrative functions hypervisors perform are also an instability factor as they open up a variety of attacks. Under certain conditions, these attacks can make it possible to access data stored in the memories of other active cloud users working with the same hardware. Moreover, cloud providers could also use hypervisors to take a peek at their users’ data themselves.
Both these risks are unacceptable to companies and governmental organizations that process sensitive data. Indeed, in an expert report compiled by the Swiss Federal Council, which examined the legal framework for implementing Switzerland’s cloud strategy, unauthorized access to what’s referred to as “data in use” was rated as the most probable risk associated with using a public cloud.
Fully isolating the hypervisor is impossible
There are, however, fundamental limitations as to how well a user system can be isolated and protected from the hypervisor. After all, some communication must take place between the two, and as an administrative tool, the hypervisor still has to be able to perform its core tasks. These include allocating cloud resources and managing the virtual server running the secured system in the cloud.
One of the remaining interfaces between the hypervisor and the TEE concerns the management of interrupts. The ETH team launched what are known as Ahoi attacks to exploit the hypervisor as a means of sending coordinated interrupts to the secured system at any time. This exposes the gap in security: instead of blocking the request from the untrustworthy hypervisor, the TEE lets certain interrupts through. Unaware that these interrupts are coming from outside, the system runs its usual programming routines.
Interrupt heckles knock security off its game
By sending coordinated interrupt heckles, the ETH scientists managed to confuse a TEE-secured system so effectively that they were able to gain root access—in other words, take full control.
“Most affected by this problem was AMD’s confidential computing, which proved vulnerable to attack from several different interrupts. In the case of Intel, only one interrupt door had been left open,” Shinde says in summarizing the results of her “Heckler attack.” The researchers also rated AMD’s previous means of defense as insufficient. The chip manufacturers have since taken steps to address this.
The second attack scenario, known as WeSee, affects AMD hardware only. It exploits a mechanism that the chip manufacturer introduced to make communication between TEE and hypervisor easier despite isolation. In this case, a special interrupt can cause the secured system to divulge sensitive data and even run external programs.
Byproduct on the path to user control of phones
As important as it is to find gaps in the security for sensitive data stored in the public cloud, for Shinde and her research group this was merely a byproduct on the path to ensuring that users of iPhones and Android smartphones retain full control over their data and applications. A specially designed TEE will do more than make sure user data is protected from eavesdropping by the manufacturer’s operating system.
“We also want our TEE to support unmonitored operation of those apps not managed by Apple or Google,” Shinde says.
More information: Benedict Schlüter et al, Heckler: Breaking Confidential VMs with Malicious Interrupts (2024). In: 33rd USENIX Security Symposium (USENIX Security), August 14-16, 2024
Benedict Schlüter et al, WeSee: Using Malicious #VC Interrupts to Break AMD SEV-SNP (2024). In: 45th IEEE Symposium on Security and Privacy (IEEE S&P), May 20-23, 2024.
News
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]















