Over the past few years, hardware manufacturers have developed technologies that ought to make it possible for companies and governmental organizations to process sensitive data securely using shared cloud computing resources. Known as confidential computing, this approach protects sensitive data while it is being processed by isolating it in an area that is impenetrable to other users and even to the cloud provider. But computer scientists at ETH Zurich have now proven that it is possible for hackers to gain access to these systems and to the data stored in them.
The researchers ran two attack scenarios, both using what’s known as the interrupt mechanism, which temporarily disrupts regular processing—for instance to prioritize a different computing task. There are a total of 256 different interrupts, and each one triggers a specific sequence of programming commands.
“Interrupts are a marginal concern, and it appears that ensuring they have systematic safeguards in place has simply been overlooked,” says Shweta Shinde, Professor of Computer Science at ETH Zurich. Together with her Secure & Trustworthy Systems Group, Shinde identified the problematic vulnerabilities in the server hardware used by two leading manufacturers of computer chips, AMD and Intel.
Eavesdrop-proof smartphone project helps find the gaps
Shinde’s team uncovered the security gaps while examining the confidential computing technologies used in AMD and Intel processors. The researchers wanted to gain an in-depth understanding of how these processors function because they are working on an eavesdrop-proof smartphone based on confidential computing.
At the core of confidential computing is the trusted execution environment (TEE). The TEE is a hardware-based component that isolates applications while they are being run. Accessing the application memory is then possible only with an authorized code. This means the data is also protected from unauthorized access while it is being stored, unencrypted, in the working memory during processing. In the past, the only way to ensure such protection was to encrypt data while stored on the hard drive and during transmission.
Instability factor number one: Hypervisors
In the public cloud, applications are isolated using a TEE, specifically from what’s known as a hypervisor. Cloud providers use hypervisor software to manage resources ranging from hardware components to their customers’ virtual servers. Hypervisors are an important part of cloud services because they create the required flexibility, efficiency and security. In addition to managing and optimizing how the underlying hardware is used, they ensure that different users can work securely in separate areas of the same cloud without disturbing each other.
But the administrative functions hypervisors perform are also an instability factor as they open up a variety of attacks. Under certain conditions, these attacks can make it possible to access data stored in the memories of other active cloud users working with the same hardware. Moreover, cloud providers could also use hypervisors to take a peek at their users’ data themselves.
Both these risks are unacceptable to companies and governmental organizations that process sensitive data. Indeed, in an expert report compiled by the Swiss Federal Council, which examined the legal framework for implementing Switzerland’s cloud strategy, unauthorized access to what’s referred to as “data in use” was rated as the most probable risk associated with using a public cloud.
Fully isolating the hypervisor is impossible
There are, however, fundamental limitations as to how well a user system can be isolated and protected from the hypervisor. After all, some communication must take place between the two, and as an administrative tool, the hypervisor still has to be able to perform its core tasks. These include allocating cloud resources and managing the virtual server running the secured system in the cloud.
One of the remaining interfaces between the hypervisor and the TEE concerns the management of interrupts. The ETH team launched what are known as Ahoi attacks to exploit the hypervisor as a means of sending coordinated interrupts to the secured system at any time. This exposes the gap in security: instead of blocking the request from the untrustworthy hypervisor, the TEE lets certain interrupts through. Unaware that these interrupts are coming from outside, the system runs its usual programming routines.
Interrupt heckles knock security off its game
By sending coordinated interrupt heckles, the ETH scientists managed to confuse a TEE-secured system so effectively that they were able to gain root access—in other words, take full control.
“Most affected by this problem was AMD’s confidential computing, which proved vulnerable to attack from several different interrupts. In the case of Intel, only one interrupt door had been left open,” Shinde says in summarizing the results of her “Heckler attack.” The researchers also rated AMD’s previous means of defense as insufficient. The chip manufacturers have since taken steps to address this.
The second attack scenario, known as WeSee, affects AMD hardware only. It exploits a mechanism that the chip manufacturer introduced to make communication between TEE and hypervisor easier despite isolation. In this case, a special interrupt can cause the secured system to divulge sensitive data and even run external programs.
Byproduct on the path to user control of phones
As important as it is to find gaps in the security for sensitive data stored in the public cloud, for Shinde and her research group this was merely a byproduct on the path to ensuring that users of iPhones and Android smartphones retain full control over their data and applications. A specially designed TEE will do more than make sure user data is protected from eavesdropping by the manufacturer’s operating system.
“We also want our TEE to support unmonitored operation of those apps not managed by Apple or Google,” Shinde says.
More information: Benedict Schlüter et al, Heckler: Breaking Confidential VMs with Malicious Interrupts (2024). In: 33rd USENIX Security Symposium (USENIX Security), August 14-16, 2024
Benedict Schlüter et al, WeSee: Using Malicious #VC Interrupts to Break AMD SEV-SNP (2024). In: 45th IEEE Symposium on Security and Privacy (IEEE S&P), May 20-23, 2024.

News
Oxford study reveals how COVID-19 vaccines prevent severe illness
A landmark study by scientists at the University of Oxford, has unveiled crucial insights into the way that COVID-19 vaccines mitigate severe illness in those who have been vaccinated. Despite the global success of [...]
Annual blood test could detect cancer earlier and save lives
A single blood test, designed to pick up chemical signals indicative of the presence of many different types of cancer, could potentially thwart progression to advanced disease while the malignancy is still at an early [...]
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]
Brain-computer interface allows paralyzed users to customize their sense of touch
University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch. While exploring a digitally [...]
Scientists Flip a Gut Virus “Kill Switch” – Expose a Hidden Threat in Antibiotic Treatment
Scientists have long known that bacteriophages, viruses that infect bacteria, live in our gut, but exactly what they do has remained elusive. Researchers developed a clever mouse model that can temporarily eliminate these phages [...]
Enhanced Antibacterial Polylactic Acid-Curcumin Nanofibers for Wound Dressing
Background Wound healing is a complex physiological process that can be compromised by infection and impaired tissue regeneration. Conventional dressings, typically made from natural fibers such as cotton or linen, offer limited functionality. Nanofiber [...]
Global Nanomaterial Regulation: A Country-by-Country Comparison
Nanomaterials are materials with at least one dimension smaller than 100 nanometres (about 100,000 times thinner than a human hair). Because of their tiny size, they have unique properties that can be useful in [...]
Pandemic Potential: Scientists Discover 3 Hotspots of Deadly Emerging Disease in the US
Virginia Tech researchers discovered six new rodent carriers of hantavirus and identified U.S. hotspots, highlighting the virus’s adaptability and the impact of climate and ecology on its spread. Hantavirus recently drew public attention following reports [...]
Studies detail high rates of long COVID among healthcare, dental workers
Researchers have estimated approximately 8% of Americas have ever experienced long COVID, or lasting symptoms, following an acute COVID-19 infection. Now two recent international studies suggest that the percentage is much higher among healthcare workers [...]
Melting Arctic Ice May Unleash Ancient Deadly Diseases, Scientists Warn
Melting Arctic ice increases human and animal interactions, raising the risk of infectious disease spread. Researchers urge early intervention and surveillance. Climate change is opening new pathways for the spread of infectious diseases such [...]
Scientists May Have Found a Secret Weapon To Stop Pancreatic Cancer Before It Starts
Researchers at Cold Spring Harbor Laboratory have found that blocking the FGFR2 and EGFR genes can stop early-stage pancreatic cancer from progressing, offering a promising path toward prevention. Pancreatic cancer is expected to become [...]