Researchers from the Université de Montréal in Canada have created and verified a new class of DNA-based drug transporters that are 20,000 times smaller than a human hair and could enhance cancer treatment and other diseases.
Optimal Dosing at All Times: A Medical Challenge
Providing and maintaining a therapeutic drug dosage during treatment is one of the most important factors in the successful treatment of disease. Overexposure raises side effects whereas sub-optimal therapeutic exposure decreases effectiveness and often results in drug resistance.
Modern medicine continues to struggle with maintaining the ideal drug concentration level in the blood. Patients must take numerous doses at regular intervals since most drugs degrade quickly, and they frequently forget to do so. The drug concentration in each patient’s blood also varies considerably because each has a unique pharmacokinetic profile.
Alexis Vallée-Bélisle, an Associate Professor of Chemistry at the Université de Montréal and a specialist in bio-inspired nanotechnologies, began to investigate how biological systems control and maintain the concentration of biomolecules after noticing that only about 50% of cancer patients receive the ideal drug dosage during certain chemotherapy.
We have found that living organisms employ protein transporters that are programmed to maintain precise concentration of key molecules such as thyroid hormones, and that the strength of the interaction between these transporters and their molecules dictates the precise concentration of the free molecule.
Alexis Vallée-Bélisle, Associate Professor, Chemistry, Université de Montréal
This simple and direct notion prompted Valléé-Belisle and his research group to create synthetic drug transporters that mimic the natural effect of preserving a precise drug concentration during treatment. Valléé-Belisle holds a Canada Research Chair in bioengineering and bionanotechnology.
Arnaud Desrosiers, a Ph.D. student at UdeM, is the study’s first author. He discovered and created two DNA transporters: one for the antimalarial quinine and the other for the chemical doxorubicin, frequently used to treat leukemia and breast cancer.
He went on to show how these synthetic transporters could be easily set up to deliver and maintain any desired drug concentration.
More interestingly, we also found that these nanotransporters could also be employed as a drug reservoir to prolong the effect of the drug and minimize its dosage during treatment. Another impressive feature of these nanotransporters is that they can be directed to specific parts of the body where the drug is most needed – and that, in principle, should reduce most side effects.
Arnaud Desrosiers, Study First Author and PhD Student, Université de Montréal
Nanotreated Mice: Reduced Cardiotoxicity
The researchers collaborated with Jeanne Leblond-Chain, a pharmacist at the Université de Bordeaux in France, Luc DesGroseillers, a biochemist at the Université de Montréal, Jérémie Berdugo, a pathologist at the Université de Montréal, Céline Fiset, a pharmacist at the Montreal Heart Institute, and Vincent De Guire, a clinical biochemist at the Maisonneuve-Rosemont Hospital, which is affiliated with Université de Montréal, to show the effectiveness of these nanotransporters.
The team found that a particular drug-transporter formulation enables doxorubicin to be kept in circulation and significantly inhibits its diffusion toward important organs like the heart, lungs, and pancreas.
This formulation kept doxorubicin in the blood of mice 18 times longer than usual and minimized cardiotoxicity, keeping the mice healthier as indicated by their normal weight gain.
Vallée-Bélisle stated, “Another great property of our nanotransporters is their high versatility. For now, we have demonstrated the working principle of these nanotransporters for two different drugs. But thanks to the high programmability of DNA and protein chemistries, one can now design these transporters to precisely deliver a wide range of therapeutic molecules.”
He further added, “Additionally, these transporters could also be combined with human-designed liposomic transporters that are now being employed to deliver drugs at various rates.”
A Clinical Study for Blood Cancers?
The scientists are now eager to confirm if their discovery works clinically. They believe their doxorubicin nanotransporter could be useful in treating blood cancers since it is designed to keep the drug in blood circulation as effectively as possible.
“We envision that similar nanotransporters may also be developed to deliver drugs to other specific locations in the body and maximize the presence of the drug at tumor sites. This would drastically improve the efficiency of drugs as well as decrease their side effects.”
The National Science and Engineering Research Council of Canada, the Canada Research Chairs, Les Fonds de recherche du Québec – Nature et technologies, and Le regroupement québécois de research sur la fonction, l’ingénierie et les applications des protéines (PROTEO) provided funding for this study.

News
Unlocking hidden soil microbes for new antibiotics
Most bacteria cannot be cultured in the lab-and that's been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil [...]
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]
Long COVID Symptoms Are Closer To A Stroke Or Parkinson’s Disease Than Fatigue
When most people get sick with COVID-19 today, they think of it as a brief illness, similar to a cold. However, for a large number of people, the illness doesn't end there. The World [...]
The world’s first AI Hospital, developed in China is transforming healthcare
Artificial Intelligence and its developments have had a revolutionary impact on society, and healthcare is not an exception. China has made massive strides in AI integrated healthcare, and continues to do so as AI [...]