Researchers from the Université de Montréal in Canada have created and verified a new class of DNA-based drug transporters that are 20,000 times smaller than a human hair and could enhance cancer treatment and other diseases.
Optimal Dosing at All Times: A Medical Challenge
Providing and maintaining a therapeutic drug dosage during treatment is one of the most important factors in the successful treatment of disease. Overexposure raises side effects whereas sub-optimal therapeutic exposure decreases effectiveness and often results in drug resistance.
Modern medicine continues to struggle with maintaining the ideal drug concentration level in the blood. Patients must take numerous doses at regular intervals since most drugs degrade quickly, and they frequently forget to do so. The drug concentration in each patient’s blood also varies considerably because each has a unique pharmacokinetic profile.
Alexis Vallée-Bélisle, an Associate Professor of Chemistry at the Université de Montréal and a specialist in bio-inspired nanotechnologies, began to investigate how biological systems control and maintain the concentration of biomolecules after noticing that only about 50% of cancer patients receive the ideal drug dosage during certain chemotherapy.
We have found that living organisms employ protein transporters that are programmed to maintain precise concentration of key molecules such as thyroid hormones, and that the strength of the interaction between these transporters and their molecules dictates the precise concentration of the free molecule.
Alexis Vallée-Bélisle, Associate Professor, Chemistry, Université de Montréal
This simple and direct notion prompted Valléé-Belisle and his research group to create synthetic drug transporters that mimic the natural effect of preserving a precise drug concentration during treatment. Valléé-Belisle holds a Canada Research Chair in bioengineering and bionanotechnology.
Arnaud Desrosiers, a Ph.D. student at UdeM, is the study’s first author. He discovered and created two DNA transporters: one for the antimalarial quinine and the other for the chemical doxorubicin, frequently used to treat leukemia and breast cancer.
He went on to show how these synthetic transporters could be easily set up to deliver and maintain any desired drug concentration.
More interestingly, we also found that these nanotransporters could also be employed as a drug reservoir to prolong the effect of the drug and minimize its dosage during treatment. Another impressive feature of these nanotransporters is that they can be directed to specific parts of the body where the drug is most needed – and that, in principle, should reduce most side effects.
Arnaud Desrosiers, Study First Author and PhD Student, Université de Montréal
Nanotreated Mice: Reduced Cardiotoxicity
The researchers collaborated with Jeanne Leblond-Chain, a pharmacist at the Université de Bordeaux in France, Luc DesGroseillers, a biochemist at the Université de Montréal, Jérémie Berdugo, a pathologist at the Université de Montréal, Céline Fiset, a pharmacist at the Montreal Heart Institute, and Vincent De Guire, a clinical biochemist at the Maisonneuve-Rosemont Hospital, which is affiliated with Université de Montréal, to show the effectiveness of these nanotransporters.
The team found that a particular drug-transporter formulation enables doxorubicin to be kept in circulation and significantly inhibits its diffusion toward important organs like the heart, lungs, and pancreas.
This formulation kept doxorubicin in the blood of mice 18 times longer than usual and minimized cardiotoxicity, keeping the mice healthier as indicated by their normal weight gain.
Vallée-Bélisle stated, “Another great property of our nanotransporters is their high versatility. For now, we have demonstrated the working principle of these nanotransporters for two different drugs. But thanks to the high programmability of DNA and protein chemistries, one can now design these transporters to precisely deliver a wide range of therapeutic molecules.”
He further added, “Additionally, these transporters could also be combined with human-designed liposomic transporters that are now being employed to deliver drugs at various rates.”
A Clinical Study for Blood Cancers?
The scientists are now eager to confirm if their discovery works clinically. They believe their doxorubicin nanotransporter could be useful in treating blood cancers since it is designed to keep the drug in blood circulation as effectively as possible.
“We envision that similar nanotransporters may also be developed to deliver drugs to other specific locations in the body and maximize the presence of the drug at tumor sites. This would drastically improve the efficiency of drugs as well as decrease their side effects.”
The National Science and Engineering Research Council of Canada, the Canada Research Chairs, Les Fonds de recherche du Québec – Nature et technologies, and Le regroupement québécois de research sur la fonction, l’ingénierie et les applications des protéines (PROTEO) provided funding for this study.
News
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]
Scientists Identify the Evolutionary “Purpose” of Consciousness
Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet [...]
Novel mRNA therapy curbs antibiotic-resistant infections in preclinical lung models
Researchers at the Icahn School of Medicine at Mount Sinai and collaborators have reported early success with a novel mRNA-based therapy designed to combat antibiotic-resistant bacteria. The findings, published in Nature Biotechnology, show that in [...]
New skin-permeable polymer delivers insulin without needles
A breakthrough zwitterionic polymer slips through the skin’s toughest barriers, carrying insulin deep into tissue and normalizing blood sugar, offering patients a painless alternative to daily injections. A recent study published in the journal Nature examines [...]
Multifunctional Nanogels: A Breakthrough in Antibacterial Strategies
Antibiotic resistance is a growing concern - from human health to crop survival. A new study successfully uses nanogels to target and almost entirely inhibit the bacteria P. Aeruginosa. Recently published in Angewandte Chemie, the study [...]
Nanoflowers rejuvenate old and damaged human cells by replacing their mitochondria
Biomedical researchers at Texas A&M University may have discovered a way to stop or even reverse the decline of cellular energy production—a finding that could have revolutionary effects across medicine. Dr. Akhilesh K. Gaharwar [...]
The Stunning New Push to Protect the Invisible 99% of Life
Scientists worldwide have joined forces to build the first-ever roadmap for conserving Earth’s vast invisible majority—microbes. Their new IUCN Specialist Group reframes conservation by elevating microbial life to the same urgency as plants and [...]
Scientists Find a Way to Help the Brain Clear Alzheimer’s Plaques Naturally
Scientists have discovered that the brain may have a built-in way to fight Alzheimer’s. By activating a protein called Sox9, researchers were able to switch on star-shaped brain cells known as astrocytes and turn them into [...]
Vision can be rebooted in adults with amblyopia, study suggests
Temporarily anesthetizing the retina briefly reverts the activity of the visual system to that observed in early development and enables growth of responses to the amblyopic eye, new research shows. In the common vision [...]
Ultrasound-activated Nanoparticles Kill Liver Cancer and Activate Immune System
A new ultrasound-guided nanotherapy wipes out liver tumors while training the immune system to keep them from coming back. The study, published in Nano Today, introduces a biodegradable nanoparticle system that combines sonodynamic therapy and cell [...]
Magnetic nanoparticles that successfully navigate complex blood vessels may be ready for clinical trials
Every year, 12 million people worldwide suffer a stroke; many die or are permanently impaired. Currently, drugs are administered to dissolve the thrombus that blocks the blood vessel. These drugs spread throughout the entire [...]
Reviving Exhausted T Cells Sparks Powerful Cancer Tumor Elimination
Scientists have discovered how tumors secretly drain the energy from T cells—the immune system’s main cancer fighters—and how blocking that process can bring them back to life. The team found that cancer cells use [...]
Very low LDL-cholesterol correlates to fewer heart problems after stroke
Brigham and Women's Hospital's TIMI Study Group reports that in patients with prior ischemic stroke, very low achieved LDL-cholesterol correlated with fewer major adverse cardiovascular events and fewer recurrent strokes, without an apparent increase [...]
“Great Unified Microscope” Reveals Hidden Micro and Nano Worlds Inside Living Cells
University of Tokyo researchers have created a powerful new microscope that captures both forward- and back-scattered light at once, letting scientists see everything from large cell structures to tiny nanoscale particles in a single shot. Researchers [...]
Breakthrough Alzheimer’s Drug Has a Hidden Problem
Researchers in Japan found that although the Alzheimer’s drug lecanemab successfully removes amyloid plaques from the brain, it does not restore the brain’s waste-clearing system within the first few months of treatment. The study suggests that [...]















