Researchers found that DNA mutations from antiviral enzymes and chemotherapy fuel early bladder cancer, while abnormal circular DNA in tumor cells drives resistance to therapy. These discoveries open new therapeutic avenues.
A groundbreaking study led by researchers at Weill Cornell Medicine and the New York Genome Center has provided unprecedented insights into how bladder cancer begins and progresses. The team discovered that antiviral enzymes, which mutate the DNA of both normal and cancer cells, are key promoters of early bladder cancer development, and that standard chemotherapy is also a potent source of mutations.
The researchers also discovered that overactive genes within abnormal circular DNA structures in tumor cells genes drive bladder cancer resistance to therapy. These findings are novel insights into bladder cancer biology and point to new therapeutic strategies for this difficult-to-treat cancer.
The study, published recently in Nature, focused on the main form of bladder cancer, urothelial carcinoma, which originates from cells that line the bladder, urethra, and tubes that drain urine from the kidneys. The researchers examined malignant and pre-malignant urothelial cells taken from the same set of patients at different disease stages. They used whole-genome sequencing and advanced computational methods to map common DNA mutations, complex structural variants, and their timing.
"Our findings define new fundamental mechanisms driving bladder cancer evolution—mechanisms that we can now think about targeting with therapies," said co-senior author Dr. Bishoy Faltas, the Gellert Family–John P. Leonard MD Research Scholar in Hematology and Medical Oncology and an associate professor of medicine and of cell and developmental biology at Weill Cornell Medicine, and an oncologist at NewYork-Presbyterian/Weill Cornell Medical Center.
Dr. Nicolas Robine, director of computational biology at the New York Genome Center, and Dr. Olivier Elemento, director of the Englander Institute for Precision Medicine and a professor of physiology and biophysics at Weill Cornell Medicine, also led the study with Dr. Faltas. The co-first authors were Duy Nguyen, a technician in the Faltas Laboratory (now a doctoral student at Harvard Medical School); William Hooper, a bioinformatics scientist at the New York Genome Center; and Dr. Weisi Liu, an instructor in the Faltas Laboratory.
Major Therapeutic Targets Come into Focus
Bladder cancer occurs at the rate of about 80,000 cases per year in the United States. It can be cured with surgery if caught early, but about 30 percent of cases are diagnosed at later stages when it is much harder to treat successfully.
The researchers in the new study found strong evidence that the APOBEC3 enzymes cause early mutations that may help trigger the development of this cancer type. These enzymes evolved to disable infecting retroviruses by editing their viral DNA, though it is known that they can sometimes mutate cells' own DNA.
"The exact role of APOBEC3-induced mutations in cancer initiation hasn't been clear," said Dr. Faltas, who is also the chief research officer at the Englander Institute for Precision Medicine and a member of the Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine. "But we found that these mutations appear early in urothelial cancer, occurring even in pre-malignant urothelial tissue." In his lab, Dr. Faltas is focusing on studying the role of these mutagenic enzymes in driving cancer evolution.
The researchers found that cisplatin and other platinum-based chemotherapies cause further prominent bursts of mutations, some of which likely allow urothelial cancer cells to survive better and spread despite treatment.
A third major finding was that urothelial tumors often contain complex rearrangements of their DNA that give rise to circular segments of DNA. These "extra-chromosomal DNAs" (ecDNAs) exist apart from chromosomes in the cell nucleus and can sometimes harbor hundreds of copies of cancer-driving growth genes. The researchers discovered that these ecDNA events persist and become more complex, incorporating new DNA segments after treatment, suggesting that they drive resistance to therapy.
This prompted the team to experimentally model an ecDNA version of one of these genes, called CCND1, a master regulator of the cell cycle in the laboratory. The results of these experiments confirmed that CCND1 in this extrachromosomal configuration drives treatment resistance.
Altogether, the findings paint a much clearer picture of the factors that trigger and drive urothelial cancer.
"Traditionally, when analyzing tumor genomes, we've used methods that analyze only a tiny fraction of their DNA, but we've come to realize that there's a lot more to discover if we sequence all their DNA and use smart methods to evaluate that data," Dr. Elemento said. "I think this collaboration vindicates that strategy."
The Englander Institute and New York Genome Center researchers are planning larger future collaborative studies to dig even deeper into urothelial cancer biology, for example, doing whole-genome sequencing of DNA along with readouts of gene activity not just in bulk tumor samples but in individual tumor cells.
"Combining those two sets of information at the single-cell level would be tremendously important and interesting," Dr. Robine said.
The researchers also plan to study potential clinical applications of this work. The investigators are hopeful that a new FDA-approved drug targeting the ERBB2 gene product—the HER2 receptor protein, also found on breast tumor cells—will work especially well in urothelial cancer patients with strong signs of ERBB2 ecDNAs. They are also working on finding ways to block ecDNA formation and maintenance.
Reference: "The interplay of mutagenesis and ecDNA shapes urothelial cancer evolution" by Duy D. Nguyen, William F. Hooper, Weisi Liu, Timothy R. Chu, Heather Geiger, Jennifer M. Shelton, Minita Shah, Zoe R. Goldstein, Lara Winterkorn, Adrienne Helland, Michael Sigouros, Jyothi Manohar, Jenna Moyer, Majd Al Assaad, Alissa Semaan, Sandra Cohen, Florencia Madorsky Rowdo, David Wilkes, Mohamed Osman, Rahul R. Singh, Andrea Sboner, Henkel L. Valentine, Phillip Abbosh, Scott T. Tagawa, David M. Nanus, Jones T. Nauseef, Cora N. Sternberg, Ana M. Molina, Douglas Scherr, Giorgio Inghirami, Juan Miguel Mosquera, Olivier Elemento, Nicolas Robine and Bishoy M. Faltas, 9 October 2024, Nature.
DOI: 10.1038/s41586-024-07955-3
The research reported in this story was supported in part by the National Cancer Institute and the National Center for Advancing Translational Science, both part of the National Institutes of Health, through grant numbers R37CA279737, U01CA260369, UL1TR002384; and the United States Department of Defense through grant number W81XWH-17-1-0539. Additional support was provided by the Starr Cancer Consortium, the Leo & Anne Albert Institute for Bladder Cancer Care and Research, the Translational Research Program in the Department of Pathology and Laboratory Medicine at Weill Cornell Medicine, and the New York Genome Center's Polyethnic-1000 Initiative.

News
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]
Nanoplastics with environmental coatings can sneak past the skin’s defenses
Plastic is ubiquitous in the modern world, and it's notorious for taking a long time to completely break down in the environment - if it ever does. But even without breaking down completely, plastic [...]
Chernobyl scientists discover black fungus feeding on deadly radiation
It looks pretty sinister, but it might actually be incredibly helpful When reactor number four in Chernobyl exploded, it triggered the worst nuclear disaster in history, one which the surrounding area still has not [...]
Long COVID Is Taking A Silent Toll On Mental Health, Here’s What Experts Say
Months after recovering from COVID-19, many people continue to feel unwell. They speak of exhaustion that doesn’t fade, difficulty breathing, or an unsettling mental haze. What’s becoming increasingly clear is that recovery from the [...]
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
Scientists Begin $14.2 Million Project To Decode the Body’s “Hidden Sixth Sense”
An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body’s internal organs. How does your brain recognize when it’s time to take a breath, when your blood pressure has [...]
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
AI Spots Hidden Signs of Disease Before Symptoms Appear
Researchers suggest that examining the inner workings of cells more closely could help physicians detect diseases earlier and more accurately match patients with effective therapies. Researchers at McGill University have created an artificial intelligence tool capable of uncovering [...]
Breakthrough Blood Test Detects Head and Neck Cancer up to 10 Years Before Symptoms
Mass General Brigham’s HPV-DeepSeek test enables much earlier cancer detection through a blood sample, creating a new opportunity for screening HPV-related head and neck cancers. Human papillomavirus (HPV) is responsible for about 70% of [...]