Cancer is a complex and diverse disease, and its range of associated mutations is vast. The combination of these genomic changes in an individual is referred to as their “mutational landscape.” These landscapes vary based on the type of cancer, and even individuals with the same type of cancer can have very different mutation patterns.
Scientists have already documented the mutational landscapes of several forms of cancer. Somatic structural variations (SVs) have been found to account for over 50% of all cancer-causing mutations. These mutations occur in cells over time, such as through copying errors in DNA during cell division, resulting in alterations to the chromosome structure.
They are not inherited and are found only in affected cells and in their daughter cells. As we age, such genomic alterations become more numerous, and a person’s mutational landscape increasingly comes to resemble a unique mosaic.
“We developed a computational analysis method to detect and identify the functional effects of somatic SVs,” she reports. This enabled the team to understand the molecular consequences of individual somatic mutations in different leukemia patients, giving them new insights into the mutation-specific alterations. Sanders says it may also be possible to use these findings to develop therapies that target the mutated cells, adding that “they open up exciting new avenues for personalized medicine.”
Even more detailed than conventional single-cell analyses
Their calculations are based on data from Strand-seq – a special single-cell sequencing method that Sanders played an instrumental role in developing and that was first introduced to the scientific community in 2012. This technique can examine a cell’s genome in much greater detail than conventional single-cell sequencing technologies. Thanks to a sophisticated experimental protocol, the Strand-seq method can independently analyze the two parental DNA strands (one from the father and one from the mother).
With conventional sequencing methods, distinguishing such homologs – chromosomes that are similar in shape and structure but not identical – is nearly impossible. “By resolving the individual homologs within a cell, somatic SVs can be identified much better than with other methods,” explains Sanders. The approach used for doing this was described by the researcher and her colleagues in a paper that appeared in Nature Biotechnology in 2020.
The research team is part of the joint research focus “Single-Cell Approaches for Personalized Medicine” of the Berlin Institute of Health at Charité (BIH), Charité – Universitätsmedizin Berlin, and the Max Delbrück Center.
Building on this work, they are now able to also determine the positions of nucleosomes in each cell. Nucleosomes are units of DNA wrapped around protein complexes called histones, and play a crucial role in organizing chromosomes. The position of nucleosomes can change during gene expression, with the type of wrapping revealing whether or not a gene is active. Sanders and her colleagues developed a self-learning algorithm to compare the gene activity of patient cells with and without somatic SV mutations, allowing them to determine the molecular impact of the structural variants.
New targets for cancer therapy
“We can now take a sample from a patient, look for the mutations that led to the disease, and also learn the signaling pathways that the disease-causing mutations disrupt,” explains Sanders. For example, the team was able to identify a rare but very aggressive mutation in a leukemia patient. The nucleosome analysis provided the researchers with information about the signaling pathways involved, which they used to specifically inhibit the growth of cells containing the mutation. “This means that a single test tells us something about the cellular mechanisms involved in cancer formation,” says Sanders. “We can eventually use this knowledge to develop personalized treatments, guided by each patient’s unique condition.”

News
3D Eye Scans Emerge as a Crucial Tool in Combating Kidney Disease
A new study indicates that 3D retinal scans could revolutionize the early detection and monitoring of kidney disease, offering a non-invasive and efficient diagnostic tool. 3D eye scans can reveal vital clues about kidney [...]
Researchers develop a blood test to identify individuals at risk of developing Parkinson’s disease
Research carried out at Oxford's Nuffield Department of Clinical Neurosciences has led to the development of a new blood-based test to identify the pathology that triggers Parkinson's disease before the main symptoms occur. This [...]
“Challenging the Paradigm” – Scientists Develop New Approach To Stop Cancer Growth
Biochemists at Case Western Reserve are concentrating on the degradation of a key protein that drives cancer; represents a major shift in research. Biochemical researchers at Case Western Reserve University have discovered a a new function [...]
Researcher develops a chatbot with an expertise in nanomaterials
A researcher has just finished writing a scientific paper. She knows her work could benefit from another perspective. Did she overlook something? Or perhaps there's an application of her research she hadn't thought of. [...]
Research shows human behavior guided by fast changes in dopamine levels
What happens in the human brain when we learn from positive and negative experiences? To help answer that question and better understand decision-making and human behavior, scientists are studying dopamine. Dopamine is a neurotransmitter [...]
Tiny robots made from human cells heal damaged tissue
The ‘anthrobots’ were able to repair a scratch in a layer of neurons in the lab. Scientists have developed tiny robots made of human cells that are able to repair damaged neural tissue1. The [...]
Antimicrobial Resistance – A Global Concern
Key facts Antimicrobial resistance (AMR) is one of the top global public health and development threats. It is estimated that bacterial AMR was directly responsible for 1.27 million global deaths in 2019 and contributed to [...]
Advancing Pancreatic Cancer Treatment with Nanoparticle-Based Chemotherapy
Pancreatic cancer, a particularly lethal form of cancer and the fourth leading cause of cancer-related deaths in the western world, often remains undiagnosed until its advanced stages due to a lack of early symptoms. [...]
The ‘jigglings and wigglings of atoms’ reveal key aspects of COVID-19 virulence evolution
Richard Feynman famously stated, "Everything that living things do can be understood in terms of the jigglings and wigglings of atoms." This week, Nature Nanotechnology features a study that sheds new light on the evolution of the coronavirus [...]
AI system self-organizes to develop features of brains of complex organisms
Cambridge scientists have shown that placing physical constraints on an artificially-intelligent system—in much the same way that the human brain has to develop and operate within physical and biological constraints—allows it to develop features [...]
How Blind People Recognize Faces via Sound
Summary: A new study reveals that people who are blind can recognize faces using auditory patterns processed by the fusiform face area, a brain region crucial for face processing in sighted individuals. The study employed [...]
Treating tumors with engineered dendritic cells
Cancer biologists at EPFL, UNIGE, and the German Cancer Research Center (Heidelberg) have developed a novel immunotherapy that does not require knowledge of a tumor's antigenic makeup. The new results may pave the way [...]
Networking nano-biosensors for wireless communication in the blood
Biological computing machines, such as micro and nano-implants that can collect important information inside the human body, are transforming medicine. Yet, networking them for communication has proven challenging. Now, a global team, including EPFL [...]
Popular Hospital Disinfectant Ineffective Against Common Superbug
Research conducted during World Antimicrobial Awareness Week examines the effects of employing suggested chlorine-based chemicals to combat Clostridioides difficile, the leading cause of antibiotic-related illness in healthcare environments worldwide. A recent study reveals that a [...]
Subjectivity and the Evolution of AI Philosophy
An Historical Overview of the Philosophy of Artificial Intelligence by Anton Vokrug Many famous people in the philosophy of technology have tried to comprehend the essence of technology and link it to society and human [...]
How Lockdowns Shaped the Virus: AI Uncovers COVID-19’s Evolutionary Secrets
A new research study shows that human behavior, like lockdowns, influences the evolution of COVID-19, leading to strains that are more transmissible earlier in their lifecycle. Using artificial intelligence technology and mathematical modeling, a research [...]