Explaining the behavior of trained neural networks remains a compelling puzzle, especially as these models grow in size and sophistication. Like other scientific challenges throughout history, reverse-engineering how artificial intelligence systems work requires a substantial amount of experimentation: making hypotheses, intervening on behavior, and even dissecting large networks to examine individual neurons.
Facilitating this timely endeavor, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have developed a novel approach that uses AI models to conduct experiments on other systems and explain their behavior. Their method uses agents built from pretrained language models to produce intuitive explanations of computations inside trained networks.
Central to this strategy is the “automated interpretability agent” (AIA), designed to mimic a scientist’s experimental processes. Interpretability agents plan and perform tests on other computational systems, which can range in scale from individual neurons to entire models, in order to produce explanations of these systems in a variety of forms: language descriptions of what a system does and where it fails, and code that reproduces the system’s behavior.
Unlike existing interpretability procedures that passively classify or summarize examples, the AIA actively participates in hypothesis formation, experimental testing, and iterative learning, thereby refining its understanding of other systems in real time.
Complementing the AIA method is the new “function interpretation and description” (FIND) benchmark, a test bed of functions resembling computations inside trained networks, and accompanying descriptions of their behavior.
One key challenge in evaluating the quality of descriptions of real-world network components is that descriptions are only as good as their explanatory power: Researchers don’t have access to ground-truth labels of units or descriptions of learned computations. FIND addresses this long-standing issue in the field by providing a reliable standard for evaluating interpretability procedures: explanations of functions (e.g., produced by an AIA) can be evaluated against function descriptions in the benchmark.
For example, FIND contains synthetic neurons designed to mimic the behavior of real neurons inside language models, some of which are selective for individual concepts such as “ground transportation.” AIAs are given black-box access to synthetic neurons and design inputs (such as “tree,” “happiness,” and “car”) to test a neuron’s response. After noticing that a synthetic neuron produces higher response values for “car” than other inputs, an AIA might design more fine-grained tests to distinguish the neuron’s selectivity for cars from other forms of transportation, such as planes and boats.
When the AIA produces a description such as “this neuron is selective for road transportation, and not air or sea travel,” this description is evaluated against the ground-truth description of the synthetic neuron (“selective for ground transportation”) in FIND. The benchmark can then be used to compare the capabilities of AIAs to other methods in the literature.
Sarah Schwettmann, Ph.D., co-lead author of a paper on the new work and a research scientist at CSAIL, emphasizes the advantages of this approach. The paper is available on the arXiv preprint server.
“The AIAs’ capacity for autonomous hypothesis generation and testing may be able to surface behaviors that would otherwise be difficult for scientists to detect. It’s remarkable that language models, when equipped with tools for probing other systems, are capable of this type of experimental design,” says Schwettmann. “Clean, simple benchmarks with ground-truth answers have been a major driver of more general capabilities in language models, and we hope that FIND can play a similar role in interpretability research.”
Automating interpretability
Large language models are still holding their status as the in-demand celebrities of the tech world. The recent advancements in LLMs have highlighted their ability to perform complex reasoning tasks across diverse domains. The team at CSAIL recognized that given these capabilities, language models may be able to serve as backbones of generalized agents for automated interpretability.
“Interpretability has historically been a very multifaceted field,” says Schwettmann. “There is no one-size-fits-all approach; most procedures are very specific to individual questions we might have about a system, and to individual modalities like vision or language. Existing approaches to labeling individual neurons inside vision models have required training specialized models on human data, where these models perform only this single task.
“Interpretability agents built from language models could provide a general interface for explaining other systems—synthesizing results across experiments, integrating over different modalities, even discovering new experimental techniques at a very fundamental level.”
As we enter a regime where the models doing the explaining are black boxes themselves, external evaluations of interpretability methods are becoming increasingly vital. The team’s new benchmark addresses this need with a suite of functions, with known structure, that are modeled after behaviors observed in the wild. The functions inside FIND span a diversity of domains, from mathematical reasoning to symbolic operations on strings to synthetic neurons built from word-level tasks.
The dataset of interactive functions is procedurally constructed; real-world complexity is introduced to simple functions by adding noise, composing functions, and simulating biases. This allows for comparison of interpretability methods in a setting that translates to real-world performance.
In addition to the dataset of functions, the researchers introduced an innovative evaluation protocol to assess the effectiveness of AIAs and existing automated interpretability methods. This protocol involves two approaches. For tasks that require replicating the function in code, the evaluation directly compares the AI-generated estimations and the original, ground-truth functions. The evaluation becomes more intricate for tasks involving natural language descriptions of functions.
In these cases, accurately gauging the quality of these descriptions requires an automated understanding of their semantic content. To tackle this challenge, the researchers developed a specialized “third-party” language model. This model is specifically trained to evaluate the accuracy and coherence of the natural language descriptions provided by the AI systems, and compares it to the ground-truth function behavior.
FIND enables evaluation revealing that we are still far from fully automating interpretability; although AIAs outperform existing interpretability approaches, they still fail to accurately describe almost half of the functions in the benchmark.
Tamar Rott Shaham, co-lead author of the study and a postdoc in CSAIL, notes that “while this generation of AIAs is effective in describing high-level functionality, they still often overlook finer-grained details, particularly in function subdomains with noise or irregular behavior.
“This likely stems from insufficient sampling in these areas. One issue is that the AIAs’ effectiveness may be hampered by their initial exploratory data. To counter this, we tried guiding the AIAs’ exploration by initializing their search with specific, relevant inputs, which significantly enhanced interpretation accuracy.” This approach combines new AIA methods with previous techniques using pre-computed examples for initiating the interpretation process.
The researchers are also developing a toolkit to augment the AIAs’ ability to conduct more precise experiments on neural networks, both in black-box and white-box settings. This toolkit aims to equip AIAs with better tools for selecting inputs and refining hypothesis-testing capabilities for more nuanced and accurate neural network analysis.
The team is also tackling practical challenges in AI interpretability, focusing on determining the right questions to ask when analyzing models in real-world scenarios. Their goal is to develop automated interpretability procedures that could eventually help people audit systems—e.g., for autonomous driving or face recognition—to diagnose potential failure modes, hidden biases, or surprising behaviors before deployment.
Watching the watchers
The team envisions one day developing nearly autonomous AIAs that can audit other systems, with human scientists providing oversight and guidance. Advanced AIAs could develop new kinds of experiments and questions, potentially beyond human scientists’ initial considerations.
The focus is on expanding AI interpretability to include more complex behaviors, such as entire neural circuits or subnetworks, and predicting inputs that might lead to undesired behaviors. This development represents a significant step forward in AI research, aiming to make AI systems more understandable and reliable.
“A good benchmark is a power tool for tackling difficult challenges,” says Martin Wattenberg, computer science professor at Harvard University who was not involved in the study. “It’s wonderful to see this sophisticated benchmark for interpretability, one of the most important challenges in machine learning today. I’m particularly impressed with the automated interpretability agent the authors created. It’s a kind of interpretability jiu-jitsu, turning AI back on itself in order to help human understanding.”
Schwettmann, Rott Shaham, and their colleagues presented their work at NeurIPS 2023 in December. Additional MIT co-authors, all affiliates of the CSAIL and the Department of Electrical Engineering and Computer Science (EECS), include graduate student Joanna Materzynska, undergraduate student Neil Chowdhury, Shuang Li, Ph.D., Assistant Professor Jacob Andreas, and Professor Antonio Torralba. Northeastern University Assistant Professor David Bau is an additional co-author.
More information: Sarah Schwettmann et al, FIND: A Function Description Benchmark for Evaluating Interpretability Methods, arXiv (2023). DOI: 10.48550/arxiv.2309.03886

News
Annual blood test could detect cancer earlier and save lives
A single blood test, designed to pick up chemical signals indicative of the presence of many different types of cancer, could potentially thwart progression to advanced disease while the malignancy is still at an early [...]
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]
Brain-computer interface allows paralyzed users to customize their sense of touch
University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch. While exploring a digitally [...]
Scientists Flip a Gut Virus “Kill Switch” – Expose a Hidden Threat in Antibiotic Treatment
Scientists have long known that bacteriophages, viruses that infect bacteria, live in our gut, but exactly what they do has remained elusive. Researchers developed a clever mouse model that can temporarily eliminate these phages [...]
Enhanced Antibacterial Polylactic Acid-Curcumin Nanofibers for Wound Dressing
Background Wound healing is a complex physiological process that can be compromised by infection and impaired tissue regeneration. Conventional dressings, typically made from natural fibers such as cotton or linen, offer limited functionality. Nanofiber [...]
Global Nanomaterial Regulation: A Country-by-Country Comparison
Nanomaterials are materials with at least one dimension smaller than 100 nanometres (about 100,000 times thinner than a human hair). Because of their tiny size, they have unique properties that can be useful in [...]
Pandemic Potential: Scientists Discover 3 Hotspots of Deadly Emerging Disease in the US
Virginia Tech researchers discovered six new rodent carriers of hantavirus and identified U.S. hotspots, highlighting the virus’s adaptability and the impact of climate and ecology on its spread. Hantavirus recently drew public attention following reports [...]
Studies detail high rates of long COVID among healthcare, dental workers
Researchers have estimated approximately 8% of Americas have ever experienced long COVID, or lasting symptoms, following an acute COVID-19 infection. Now two recent international studies suggest that the percentage is much higher among healthcare workers [...]
Melting Arctic Ice May Unleash Ancient Deadly Diseases, Scientists Warn
Melting Arctic ice increases human and animal interactions, raising the risk of infectious disease spread. Researchers urge early intervention and surveillance. Climate change is opening new pathways for the spread of infectious diseases such [...]
Scientists May Have Found a Secret Weapon To Stop Pancreatic Cancer Before It Starts
Researchers at Cold Spring Harbor Laboratory have found that blocking the FGFR2 and EGFR genes can stop early-stage pancreatic cancer from progressing, offering a promising path toward prevention. Pancreatic cancer is expected to become [...]
Breakthrough Drug Restores Vision: Researchers Successfully Reverse Retinal Damage
Blocking the PROX1 protein allowed KAIST researchers to regenerate damaged retinas and restore vision in mice. Vision is one of the most important human senses, yet more than 300 million people around the world are at [...]