Nanoparticles, or tiny molecules that can deliver a payload of drug treatments and other agents, show great promise for treating cancers. Scientists can build them in various shapes with different materials, often as porous, crystal-like structures formed by a lattice of metal and organic compounds, or as capsules that enclose their contents inside a shell. When injected into a tumor, these particles can release treatments that attack cancer cells directly or complement other treatments like immunotherapy and radiation.
“This was an unusual collaboration between medicine and inorganic chemistry to solve this unmet need of treating tumors that are intractable to conventional therapy,” said Ralph Weichselbaum, MD, the Daniel K. Ludwig Distinguished Service Professor and Chair of Radiation and Cellular Oncology at UChicago. “We were able to deliver an immune stimulant that has anti-tumor activity on its own, and enabled radiation and immunotherapy to cure these tumors.”
The study, “Zinc cyclic di-AMP nanoparticles target and suppress tumors via endothelial STING activation and tumor-associated macrophage reinvigoration,” was published in Nature Nanotechnology on October 26, 2022.
Cold, hot, and hotter tumors
As always with cancer, some tumors prove resistant to even the most high-tech of treatments. Immunotherapy unleashes the body’s immune system to find and destroy cancer cells, but the tumors must be “hot” or inflamed for these treatments to be effective. So called “cold” tumors that aren’t inflamed can hide from the immune system but continue to grow and metastasize.
In a pair of studies published in 2014, Weichselbaum and other UChicago researchers showed that mice that lacked a protein pathway called STING did not mount an effective immune response to cancer in conjunction with immunotherapy or high-dose radiation treatment. STING, short for Stimulator of Interferon Genes complex, is a crucial part of the process the immune system relies on to detect threats–such as infections or cancer cells—that are marked by the presence of DNA that is damaged or in the wrong place, inside the cell but outside the nucleus.
Wenbin Lin, Ph.D., the James Franck Professor of Chemistry at UChicago, specializes in building nanostructures that can deliver a variety of compounds to tumors. Nanoparticles tend to get trapped in tumors because of their haywire vasculature and lymphatic systems, thus they can deliver more of their payloads exactly where needed. Lin has developed a new type of particle called nanoscale coordination polymers (NCPs) that have a non-toxic zinc phosphate core surrounded by layers of lipids. These NCPs have the advantage that they can be engineered for controlled release, further increasing drug deposition in tumors.
Lin, who is trained as an inorganic chemist, says he is in a unique situation working on medical treatments because of his experience designing particles with different properties. “It’s a unique technology that is well-suited for delivering many drug agents. We already know how to modify the surface so they can circulate in the blood and not be engulfed by macrophages,” he said.
A versatile technology
In the new study, Weichselbaum and Lin’s teams loaded the NCPs with a nucleotide called cyclic dimeric adenosine monophosphate (CDA). CDA is a bit of DNA that bacteria generate when they invade a host; its sudden appearance—whether by infection or dropped off by a nanoparticle—triggers the STING pathway and the host’s innate immune response to fight the cancer.
This boosted immune response attacked the tumors in multiple ways, suppressing tumor growth and preventing metastasis in several types of cancers. It disrupted endothelial cells in the blood vessels of tumors, further increasing the deposition of CDA in tumors. Surprisingly, it also enhanced the ability of tumor-associated macrophages that had infiltrated tumors to present antigens that mark them for attack by anti-tumor T-cells.
In addition, this approach made non-inflamed, cold pancreatic tumors more susceptible to immunotherapy treatment. It was also effective against glioma, effectively crossing the blood-brain barrier to reverse resistance to immunotherapy and enhance the effects of radiation treatments.
“That’s the brilliant part of these nanoformulations. We were able to encapsulate a STING agonist that is extremely potent and promotes both innate and adaptive immunity,” Weichselbaum said.
Lin, who has formed a startup company called Coordination Pharmaceuticals to develop NCPs, is enthusiastic about their potential for more clinical uses.
“This has tremendous potential because we’re not limited to a single compound. We can formulate other nucleotides and use other drugs in the same NCP,” he said. “The technology is versatile, and we are exploring ways to optimize formulations to take more NCP candidates into clinical trials. Small startups can advance clinical candidates in a much shorter amount of time than big drug companies.”
The study is titled “Zinc cyclic di-AMP nanoparticles target and suppress tumors via endothelial STING activation and tumor-associated macrophage reinvigoration.” Additional authors include Kaiting Yang, Wenbo Han, Xiaomin Jiang, Andras Piffko, Jason Bugno, Hua Liang, Ziwan Xu, Wenxin Zheng, Liangliang Wang, Jiaai Wang, and Xiaona Huang from the University of Chicago; Chuanhui Han from Peking University, China; Sirui Li and Jenny P. Y. Ting from the University of North Carolina at Chapel Hill; and Yang-Xin Fu from Tsinghua University, China.

News
Nasal Vaccines: Stopping the COVID-19 Virus Before It Reaches the Lungs
The Pfizer-BioNTech and Moderna mRNA vaccines have played a large role in preventing deaths and severe infections from COVID-19. But researchers are still in the process of developing alternative approaches to vaccines to improve [...]
NASA Tracking a Huge, Growing Anomaly in Earth’s Magnetic Field – with video
NASA is actively monitoring a strange anomaly in Earth's magnetic field: a giant region of lower magnetic intensity in the skies above the planet, stretching out between South America and southwest Africa. This vast, developing [...]
New, Better Models Show How Infectious Diseases Like COVID-19 Spread
Infectious diseases such as COVID-19 can spread rapidly across the globe. Models that can predict how such diseases spread will strengthen national surveillance systems and improve public health decision-making. The COVID-19 pandemic has emphasized the [...]
Human Antibodies Discovered That Can Block Multiple Coronaviruses Including COVID-19
Results from a Scripps Research and UNC team pave the way for a vaccine and therapeutic antibodies that could be stockpiled to fight future coronavirus pandemics. A team of scientists from Scripps Research and [...]
Nanotechnology could be used to treat lymphedema
The human body is made up of thousands of tiny lymphatic vessels that ferry white blood cells and proteins around the body, like a superhighway of the immune system. It's remarkably efficient, but if [...]
DNA Nanotechnology Tools – From Design to Applications
Suite of DNA nanotechnology devices engineered to overcome specific bottlenecks in the development of new therapies, diagnostics, and understanding of molecular structures. DNA nanostructures with their potential for cell and tissue permeability, biocompatibility, and [...]
Regenerating bone with deer antler stem cells
Scientists from a collection of Chinese research institutions collaborated on a study of organ regeneration in mammals, finding deer antler blastema progenitor cells are a possible source of conserved regeneration cells in higher vertebrates. [...]
AI Takes On Cancer: Analysis of Mutations Could Lead to Improved Therapy
Cancer is a complex and diverse disease, and its range of associated mutations is vast. The combination of these genomic changes in an individual is referred to as their “mutational landscape.” These landscapes vary [...]
Exposing tumours to bacteria converts immune cells to cancer killers
New research on inflammation could lead to better treatments to improve outcomes for people with advanced or previously untreatable cancers. Introducing bacteria to a tumour’s microenvironment creates a state of acute inflammation that triggers [...]
Smart nanotechnology for more accurate delivery of insulin
More efficient and longer lasting glucose-responsive insulin that eliminates the need for people with type 1 diabetes to measure their glucose levels could be a step closer thanks to a Monash University-led project. Published [...]
Efficiently Harvesting Rare Earth Elements From Wastewater Using Exotic Bacteria
The novel strains of cyanobacteria exhibit a fast and efficient “biosorption” of rare earth elements, making recycling possible. Rare earth elements (REEs) are a set of 17 metallic elements that possess similar chemical properties. [...]
Resisting Treatment: Cancer Cells Shrink or Super-Size To Survive
A new approach to image analysis has uncovered how cancer cells manipulate their size as a means of resisting treatment. Researchers have discovered that cancer cells are capable of either shrinking or super-size themselves [...]
New Research Explains Why Children Avoid Severe COVID-19 Symptoms
According to new research, children exhibit a robust initial immune response to the coronavirus, however, they are unable to transfer this response to long-lasting memory T cells like adults do. Researchers led by scientists [...]
Scientists Unravel Protein Map of Mitochondria
A new study sheds light on the organization of proteins within mitochondria. Mitochondria, the “powerhouses” of cells, play a crucial role in the energy production of organisms and are involved in various metabolic and [...]
Mystifying Trapping Phenomenon: A Surprising Way To Catch a Microparticle
New insights could advance microfluidics and drug delivery systems. New study finds obstacles can trap rolling microparticles in fluid Through simulations and experiments, physicists attribute the trapping effect to stagnant pockets of fluid, created [...]
New Alzheimer’s Treatment: Blocking T Cells To Prevent Neurodegeneration
Findings, in mice, open up drug development possibilities for brain diseases linked to tau protein. Nearly two dozen experimental therapies targeting the immune system are in clinical trials for Alzheimer’s disease, a reflection of the growing [...]