There are currently 25 vaccines to fight COVID-19 in clinical evaluation, another 139 vaccines in a pre-clinical stage, and many more being researched.
But many of those vaccines, if they are at all successful, might not produce an immune response in portions of the population. That’s because some people’s bodies will react differently to the materials in the vaccine that are supposed to stimulate virus-fighting T cells.
And so just figuring out how much coverage a vaccine has, meaning, how many people it will stimulate to mount an immune response, is a big part of the vaccine puzzle.
With that challenge in mind, scientists at Massachusetts Institute of Technology on Monday unveiled a machine learning approach that can predict the probability that a particular vaccine design will reach a certain proportion of the population. That doesn’t mean they can guarantee its effectiveness, but the scientists’ work can aid in knowing up-front whether a given vaccine will have large gaps in who it can help.
The good news is, the MIT scholars have used their approach to design a novel COVID-19 vaccine on the computer that has far better coverage than many of the designs that have been published in the literature this year. They’re now testing the design in animals.
The bad news is, there could very well be large gaps in coverage of some of the existing vaccines already being explored by companies and labs, according to one of the authors of the report, David K. Gifford, who is with MIT’s Computer Science and Artificial Intelligence Laboratory.
“While they may protect more than 50% of the population, certain individuals and older individuals may not be protected,” Gifford told ZDNet in an email, when asked about vaccines currently under trial and in development.
The long path to a vaccine
Vaccines in development were not the direct subject of the work. Most of those vaccines are closed designs; no one knows exactly how they are composed. Instead, Gifford and colleagues designed vaccines from scratch, and then analyzed how effective they are, and extrapolated the findings to a group of vaccines whose composition is known.
Based on that, one can infer there might be problems with vaccines whose exact composition is not known.
It must be borne in mind that any in silico vaccine design such as the kind discussed here is only the beginning of a process that can take years to go through in vivo testing, in animals and then in humans, to establish both safety (non-toxicity), and efficacy, meaning that it actually confers a significant immune response.
But the work shows the ability of large computer models to dramatically speed up the initial work of searching through many, many possible combinations within a universe of possible ingredients, a search that can itself take years at the front end of a drug development pipeline.
This is the latest in large-scale, in-silico efforts against pathogens seen this year from MIT. Back in March, ZDNet reported on how MIT scientists used large-scale machine learning to search many combinations of compounds to come up with a novel antibiotic for a germ nothing else could kill.
Image Credit: Amanda Scott/Envato
Thanks to Heinz V. Hoenen. Follow him on twitter: @HeinzVHoenen
News This Week
Needle-Free: New Nano-Vaccine Effective Against All COVID-19 Variants
A new nano-vaccine developed by TAU and the University of Lisbon offers a needle-free, room-temperature-storable solution against COVID-19, targeting all key variants effectively. Professor Ronit Satchi-Fainaro’s lab at Tel Aviv University’s Faculty of Medical and [...]
Photoacoustic PDA-ICG Nanoprobe for Detecting Senescent Cells in Cancer
A study in Scientific Reports evaluated a photoacoustic polydopamine-indocyanine green (PDA-ICG) nanoprobe for detecting senescent cells. Senescent cells play a role in tumor progression and therapeutic resistance, with potential adverse effects such as inflammation and tissue [...]
How Dysregulated Cell Signaling Causes Disease
Cell signaling is crucial for cells to communicate and function correctly. Disruptions in these pathways, caused by genetic mutations or environmental factors, can lead to uncontrolled cell growth, improper immune responses, or errors in [...]
Scientists Develop Super-Strong, Eco-Friendly Plastic That Bacteria Can Eat
Researchers at the Weizmann Institute have developed a biodegradable composite material that could play a significant role in addressing the global plastic waste crisis. Billions of tons of plastic waste clutter our planet. Most [...]
Building a “Google Maps” for Biology: Human Cell Atlas Revolutionizes Medicine
New research from the Human Cell Atlas offers insights into cell development, disease mechanisms, and genetic influences, enhancing our understanding of human biology and health. The Human Cell Atlas (HCA) consortium has made significant [...]
Bioeconomic Potential: Scientists Just Found 140 Reasons to Love Spider Venom
Researchers at the LOEWE Centre for Translational Biodiversity Genomics (TBG) have discovered a significant diversity of enzymes in spider venom, previously overshadowed by the focus on neurotoxins. These enzymes, found across 140 different families, [...]
Quantum Algorithms and the Future of Precision Medicine
Precision medicine is reshaping healthcare by tailoring treatments to individual patients based on their unique genetic, environmental, and lifestyle factors. At the forefront of this revolution, the integration of quantum computing and machine learning [...]
Scientists Have Discovered a Simple Supplement That Causes Prostate Cancer Cells To Self-Destruct
Menadione, a vitamin K precursor, shows promise in slowing prostate cancer in mice by disrupting cancer cell survival processes, with potential applications for human treatment and myotubular myopathy therapy. Prostate cancer is a quiet [...]
Scientists reveal structural link for initiation of protein synthesis in bacteria
Within a cell, DNA carries the genetic code for building proteins. To build proteins, the cell makes a copy of DNA, called mRNA. Then, another molecule called a ribosome reads the mRNA, translating it [...]
Vaping Isn’t Safe: Scientists Uncover Alarming Vascular Risks
Smoking and vaping impair vascular function, even without nicotine, with the most significant effects seen in nicotine-containing e-cigarettes. Researchers recommend avoiding both for better health. Researchers have discovered immediate impacts of cigarette and e-cigarette [...]
Twice-Yearly Lenacapavir for PrEP Reduces HIV Infections by 96%
Twice-yearly injections of the capsid inhibitor drug lenacapavir can prevent the vast majority of HIV infections, according to a Phase 3 clinical trial published Wednesday in the New England Journal of Medicine. HIV pre-exposure [...]
Did Social Distancing Begin 6,000 Years Ago? Neolithic Villagers May Have Invented It
Social distancing may have roots 6,000 years ago, as research shows Neolithic villages like Nebelivka used clustered layouts to control disease spread. The phrase “social distancing” became widely recognized in recent years as people [...]
Decoding Alzheimer’s: The Arctic Mutation’s Role in Unusual Brain Structures
Researchers have uncovered how certain genetic mutations lead to unique spherical amyloid plaques in inherited forms of Alzheimer’s, offering insights that could advance our understanding of the disease and improve therapeutic strategies. An international collaboration [...]
How Your “Lizard Brain” Fuels Overthinking and Social Anxiety
New research by Northwestern Medicine reveals how humans have evolved advanced brain regions to interpret others’ thoughts, connecting these areas with the amygdala, a part of the brain involved in emotional processing. Study sought [...]
How Did Life Begin? Researchers Discover Game-Changing Clue
New research offers a potential explanation for the formation of early Earth protocells. Few questions have captivated humankind more than the mystery of life’s origins on Earth. How did the first living cells emerge? [...]
Printable organic X-ray sensors may transform treatment for cancer patients
An international research team, led by the University of Wollongong (UOW), has found wearable organic X-ray sensors could offer safer radiotherapy protocols for cancer patients. More than 400 people are diagnosed with cancer every [...]