In March 2020, Hannu Rajaniemi pivoted his biotech company Helix Nanotechnologies’ focus from cancer therapies to Covid-19 vaccines.
The role biotech start-ups can play in a pandemic
Rajaniemi originally co-founded Helix Nanotechnologies in Cambridge, Massachusetts in 2013 to develop cancer therapeutics, which was a personal mission: His mother got sick with and eventually passed due to metastatic breast cancer.
When the company pivoted to working on Covid-19 vaccines, he knew his start-up wouldn’t be one of the first vaccines out of the gate.
“That would have required billions in [Operation] Warp Speed funding,” Rajaniemi says. (HelixNano has received $6.4 million in total funding as of May, according to Crunchbase, from investors including Y Combinator, and has received grant money from Google billionaire Eric Schmidt’s Schmidt Futures.
“In this crisis, the role of a start-up is to pursue more technically challenging, second-generation approaches and find solutions that the less agile bigger players might miss,” he says.
While the first wave of Covid vaccines distributed in the United states from Pfizer/BioNTech, Moderna and Johnson & Johnson have to adapt their vaccines to new strains, HelixNano’s booster vaccine is designed to “provide much broader immunity,” he says.
“The reason we got into this … was that we were worried about mutated SARS-CoV-2 strains able to evade vaccine immunity,” Rajaniemi says. “That is exactly the scenario that is now playing out with the South African, Brazilian and other emerging variants.”
New vaccine technologies: Essentially ‘a zoom function and an amplify function’
Developing a vaccine that is resistant to virus mutations is “an extremely challenging problem technically,” Rajaniemi says.
But with the advantage of being able to build on all the knowledge scientists now have about the virus, HelixNano invented “two completely new vaccine technologies” for which they’ve filed for patents, according to Rajaniemi.
“Essentially, we have a ‘zoom’ function and an ‘amplify’ function for mRNA vaccines,” he says. (Both the Pfizer-BioNTech and Moderna vaccines are mRNA technology, as is Helix Nanotechnologies’ booster.)
“We can make vaccines both more targeted and more powerful than was previously possible,” says Rajaniemi.
The first technology Helix Nanotechnologies developed makes vaccines more accurate.
“Traditional vaccines are blunt instruments. You show the immune system a bit of the virus — like the spike protein that SARS-CoV-2 uses to infect cells — and [the body] generates antibodies against it,” Rajaniemi says. And “those antibodies are essentially random.”
However, HelixNano’s new technology directs antibodies at a very specific part of the virus’ spike protein that “matters the most for preventing infection,” according to Rajaniemi.
“To use a nerdy analogy, imagine the virus is the Death Star [space station from Star Wars]. To blow it up you need to hit a very small target — the thermal exhaust port,” says Rajaniemi (who is also a published science fiction author).
“Your X-Wings [starfighters] could just randomly fire at the whole Death Star, but you would have to get very, very lucky to destroy it,” he says.
“But if you concentrate all your fire on the exhaust port, you have a much better chance — even if your shots get less accurate as the virus mutates.”
The second vaccine technology HelixNano developed is a way to multiply the body’s immune response to a specific vaccine target by a factor of 100.
© Provided by CNBC
Taken together, these two technological advances are what HelixNano has used to build their Covid-19 mutation-resistant booster vaccine.
Beyond its own vaccine technology innovations, HelixNano is also collaborating with Louis Falo’s lab at University of Pittsburgh to make a vaccine technology that can be applied to the skin, rather than by a shot, which therefore can be self-administered.
“The mRNA platform has proven to be effective for vaccination, but does have limitations including the requirement for very low temperatures (cold-chain) across the storage, delivery, and deployment process,” says Falo, who is chairman of the dermatology department at the University of Pittsburgh and a bioengineering professor.
“We imagine an mRNA vaccine that is stable at room temperature and can therefore be readily deployed in global vaccination campaigns the same way that one would distribute and apply Band-Aids.”
(Separately, Falo’s lab has its own skin application vaccine called PittCoVacc, which has submitted preclinical data to the Food and Drug Administration as a Pre-Investigational New Drug Application application.)
Image Credit: CNBC
Post by Amanda Scott, NA CEO. Follow her on twitter @tantriclens
Thanks to Heinz V. Hoenen. Follow him on twitter: @HeinzVHoenen

News
3D-printed implant offers a potential new route to repair spinal cord injuries
A research team at RCSI University of Medicine and Health Sciences has developed a 3-D printed implant to deliver electrical stimulation to injured areas of the spinal cord, offering a potential new route to [...]
Nanocrystals Carrying Radioisotopes Offer New Hope for Cancer Treatment
The Science Scientists have developed tiny nanocrystal particles made up of isotopes of the elements lanthanum, vanadium, and oxygen for use in treating cancer. These crystals are smaller than many microbes and can carry isotopes of [...]
New Once-a-Week Shot Promises Life-Changing Relief for Parkinson’s Patients
A once-a-week shot from Australian scientists could spare people with Parkinson’s the grind of taking pills several times a day. The tiny, biodegradable gel sits under the skin and releases steady doses of two [...]
Weekly injectable drug offers hope for Parkinson’s patients
A new weekly injectable drug could transform the lives of more than eight million people living with Parkinson's disease, potentially replacing the need for multiple daily tablets. Scientists from the University of South Australia [...]
Most Plastic in the Ocean Is Invisible—And Deadly
Nanoplastics—particles smaller than a human hair—can pass through cell walls and enter the food web. New research suggest 27 million metric tons of nanoplastics are spread across just the top layer of the North [...]
Repurposed drugs could calm the immune system’s response to nanomedicine
An international study led by researchers at the University of Colorado Anschutz Medical Campus has identified a promising strategy to enhance the safety of nanomedicines, advanced therapies often used in cancer and vaccine treatments, [...]
Nano-Enhanced Hydrogel Strategies for Cartilage Repair
A recent article in Engineering describes the development of a protein-based nanocomposite hydrogel designed to deliver two therapeutic agents—dexamethasone (Dex) and kartogenin (KGN)—to support cartilage repair. The hydrogel is engineered to modulate immune responses and promote [...]
New Cancer Drug Blocks Tumors Without Debilitating Side Effects
A new drug targets RAS-PI3Kα pathways without harmful side effects. It was developed using high-performance computing and AI. A new cancer drug candidate, developed through a collaboration between Lawrence Livermore National Laboratory (LLNL), BridgeBio Oncology [...]
Scientists Are Pretty Close to Replicating the First Thing That Ever Lived
For 400 million years, a leading hypothesis claims, Earth was an “RNA World,” meaning that life must’ve first replicated from RNA before the arrival of proteins and DNA. Unfortunately, scientists have failed to find [...]
Why ‘Peniaphobia’ Is Exploding Among Young People (And Why We Should Be Concerned)
An insidious illness is taking hold among a growing proportion of young people. Little known to the general public, peniaphobia—the fear of becoming poor—is gaining ground among teens and young adults. Discover the causes [...]
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]