Single molecular insulator pushes boundaries of current state of the art

Ever shrinking transistors are the key to faster and more efficient computer processing. Since the 1970s, advancements in electronics have largely been driven by the steady pace with which these tiny components have grown simultaneously smaller and more powerful—right down to their current dimensions on the nanometer scale. But recent years have seen this progress plateau, as researchers grapple with whether transistors may have finally hit their size limit. High among the list of hurdles standing in the way of further miniaturization: problems caused by “leakage current.”

Leakage current results when the gap between two metal electrodes narrows to the point that electrons are no longer contained by their barriers, a phenomenon known as quantum mechanical tunnelling. As the gap continues to decrease, this tunnelling conduction increases at an exponentially higher rate, rendering further miniaturization extremely challenging. Scientific consensus has long held that vacuum barriers represent the most effective means to curtail tunnelling, making them the best overall option for insulating transistors. However, even vacuum barriers can allow for some leakage due to quantum tunnelling.

In a highly interdisciplinary collaboration, researchers across Columbia Engineering, Columbia University Department of Chemistry, Shanghai Normal University, and the University of Copenhagen have upended conventional wisdom, synthesizing the first molecule capable of insulating at the nanometer scale more effectively than a vacuum barrier. Their findings are published online today in Nature.

“We’ve reached the point where it’s critical for researchers to develop creative solutions for redesigning insulators. Our molecular strategy represents a new design principle for classic devices, with the potential to support continued miniaturization in the near term,” said Columbia Engineering physicist and co-author Latha Venkataraman, who heads the lab where researcher Haixing Li conducted the project’s experimental work. Molecular synthesis was carried out in the Colin Nuckolls Lab at Columbia’s Department of Chemistry, in partnership with Shengxiong Xiao at Shanghai Normal University.

Read more at phys.org

Image Credit:  Haixing Li/Columbia Engineering

News This Week

NanoApps Medical Near-Term Projects

NanoApps Medical is investigating the possibility that superparamagnetic nanoparticles (SPIONs) and other classes of nanoparticles (e.g., gold coated nanoshells) might have the capacity to target cancerous tumors, metastasizing cancer cells, pathogens, etc. to deactivate/eliminate [...]

‘Please do not switch me off!’ People heed begging robot

If a little humanoid robot begged you to not shut it off, would you show compassion? In an experiment designed to investigate how people treat robots when they act like humans, many participants struggled [...]

How Artificial Intelligence is Changing Radiology, Pathology

Artificial intelligence and machine learning tools have the potential to analyze large datasets and extract meaningful insights to enhance patient outcomes, an ability that is proving helpful in radiology and pathology. Images obtained by [...]

Nanoparticle-Based Combination Therapy to Treat Breast, Prostate Cancer

Researchers at the University of East Anglia have developed a new nanoparticle-based cancer therapy to deliver a combination therapy directly to cancer cells. The new therapy, which has been demonstrated to make prostate cancer [...]

AI: ChronWell CEO On Why Consolidation in Healthcare Is A Good Thing

When Joe Rubinsztain started gMed, he was admittedly young—only a few years removed from medical school— and he just didn’t understand leadership that well. “I needed to be abreast of everything and understand everything [...]

Artificial Intelligence for Medical Imaging Market to Top $2B

Healthcare organizations are likely to see a rapidly growing market around artificial intelligence tools for medical imaging, a new report predicts. The market for artificial intelligence (AI) tools to process and analyze medical imaging [...]

Tuberculosis is a killer, but scientists are fighting back with nanobots

Tuberculosis, a bacterial disease which predominantly affects the lungs, isn’t all that common a sight in the United States. On average, fewer than 10,000 cases are reported each year in a country with [...]

Integrated sensor could monitor brain aneurysm treatment

Implantation of a stent-like flow diverter can offer one option for less invasive treatment of brain aneurysms – bulges in blood vessels – but the procedure requires frequent monitoring while the vessels heal. Now, [...]

.

 

2018-06-08T11:33:00+00:00

Leave A Comment