Biophysicists from MIPT have studied the structure of a nanofibrous scaffold, as well as its interaction with rat cardiac cells. The study, which is part of the research into heart tissue regeneration, revealed that cardiomyocytes — heart muscle cells — envelop nanofibers as they grow, while fibroblasts — connective tissue cells — tend to spread out on fibers forming several focal adhesion sites.

The study was conducted at MIPT’s Laboratory of Biophysics of Excitable Systems in collaboration with the researchers from the Shumakov Federal Research Center of Transplantology and Artificial Organs and the Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences. The article was published in the journal Acta Biomaterialia.

“Using three independent methods, we discovered that during their development on a nanofibrous scaffold, cardiomyocytes wrap the fibers on all sides creating a ‘sheath’ structure in the majority of cases,” explains Professor Konstantin Agladze, head of the Laboratory of Biophysics of Excitable Systems. “Fibroblasts, by contrast, have a more rigid structure and a much smaller area of interaction with the substrate, touching it only on one side.”

Regenerative medicine seeks to repair or replace lost or damaged human cells, tissues, and organs. Tissue engineering is often the only way to restore the functions of the human heart and achieve recovery. Creating “patches” for a damaged heart demands more than merely understanding the properties of the corresponding tissue cells: One also needs to study their interaction with the substrate, as well as with the surrounding solution and the neighboring cells.

Image Credit:  Researchers from MIPT

Recent News