With the goal of minimizing the side effects of chemotherapy on healthy tissues, a team of researchers at the Center for Self-assembly and Complexity, within the Institute for Basic Science (IBS) have developed novel nanocontainers able to deliver anticancer drugs at precise timing and location.

Published in Angewandte Chemie International Edition (“Mono-allyloxylated Cucurbit

[7]uril Acts as an Unconventional Amphiphile to Form Light-responsive Vesicles”), the study combines uniquely designed molecules and light-dependent drug release, which may provide a new platform to enhance the effect of anticancer therapeutics.

Thanks to a serendipitous observation, IBS researchers at POSTECH found out that tailed pumpkin-shaped molecules, mono-allyloxylated cucurbit[7]uril (AO1CB[7]), act as surfactant in water. Most surfactants, like soap molecules in bubbles and phospholipids in cellular membranes, have small water-loving (hydrophilic) heads and long fat-loving (hydrophobic) tails that determine how they arrange in space. In contrast, AO1CB[7] is rather unconventional as it forms vesicles in water despite its short hydrophobic allyloxy tail. Detailed analysis showed that the tails unite AO1CB[7] molecules into colloidal particles.

“Seeing AO1CB[7] forming a cloudy solution when shaken in water was an unexpected surprise for the team,” explains PARK Kyeng Min, the first and corresponding author of the study. “We thought to take advantage of this newly discovered property and use these vesicles as vehicles to carry anticancer drugs. Then, by controlling when and where the vesicles are broken, the drugs could be released on demand.”

Image Credit:  Institute for Basic Science

Recent News