Using nanoparticles, Yale researchers have developed a drug-delivery system that could reduce organ transplant complications by hiding the donated tissue from the recipient’s immune system.

About 25,000 organ transplants are performed in the U.S. each year. Despite significant advances in the field, short-term and long-term organ rejection still poses a risk (rejection rates vary depending on the type of organ). The risk of rejection is even higher when the donor is deceased, due to organ damage.

T cells, the white blood cells that identify and attack foreign bodies, are one of the main culprits behind organ rejection. The most potent of these, known as effector memory T cells, are activated by a group of proteins known as human leukocyte antigens (HLAs) on the surface of endothelial cells lining the donated organ’s blood vessels.

Researchers can silence the proteins with small interfering RNA (siRNA), a double-stranded RNA that hinders the expression of targeted genes. When delivered conventionally, however, the effects of siRNA last only a few days. A transplanted organ from a deceased donor typically needs weeks to “heal” and reduce the risk of rejection. The siRNA can also cause side effects in endothelial cells of other organs, which don’t need treatment, when administered to the whole body.

To give the siRNA more staying power, the researchers developed a drug delivery system in which polymer-based nanoparticles carry siRNA to the site of the graft and slowly release the drug.

Image Credit:   Saltzman Lab

Recent News