Researchers at IIT-Istituto Italiano di Tecnologia fabricated an artificial device reproducing a 1:1 scale model of the blood-brain barrier (BBB), the anatomical and functional structure that protects the central nervous system from external substances, such as contaminants, but also drugs when they are injected intravenously into the body. The device, which is a combination of artificial and biological components, will be fundamental for studying new therapeutic strategies to overcome blood-brain barrier and treat brain diseases, such as tumors.

The study was coordinated by Gianni Ciofani, researcher at IIT in Pontedera (Pisa) and Professor at Politecnico di Torino, in the framework of the research project SLaMM funded by the European Research Council (ERC) and aiming at developing new nanotechnologies for the treatment of brain diseases.

The device is described in a paper published by the scientific journal Small (“A 3D Real-Scale, Biomimetic, and Biohybrid Model of the Blood-Brain Barrier Fabricated through Two-Photon Lithography”) and highlighted by the journal inside cover: it is a microfluidic device that combines artificial components made with 3-D advanced microfabrication techniques (two-photon lithography) and biological ones, that is endothelial cells (the cells covering blood vessels).

The microprinting was realized with advanced 3D printing technologies (Nanoscribe), that make use of a laser that scans through a liquid photopolymer and solidifies the material locally and layer by layer building complex 3D objects with submicron resolution. Using this manufacturing technique researchers were able to engineer an accurate real-scale model of the BBB made from a photopolymer resin.

Image Credit:  IIT-Istituto Italiano di Tecnologia

Recent News