Experts from the Biotechnology Group at the University of Leicester led by Professor Sergey Piletsky in collaboration with the spin-off company MIP Diagnostics Ltd have announced the development of polymeric materials with molecular recognition capabilities which hold the potential to outperform natural antibodies in various diagnostic applications

In a newly released article “A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format” the researchers successfully demonstrated that polymer nanoparticles produced by the molecular imprinting technique (MIP nanoparticles) can bind to the target molecule with the same or higher affinity and specificity than widely used commercially available antibodies and against challenging targets.

Additionally, their ease of manufacture, short lead time, high affinity and the lack of requirement for cold chain logistics make them an attractive alternative to traditional antibodies for use in immunoassays.

The demonstration assays described in the above article allowed for the determination of target analytes at picomolar concentrations. The results confirmed that MIP nanoparticles can be used as viable alternatives to antibodies in ELISA format, showing similar to, or better performance than natural receptors like antibodies.

The assays possessed much higher stability, which overall is a very strong endorsement for considering industrial application of MIP nanoparticles in diagnostic platforms.

Professor Piletsky, from the University of Leicester’s Department of Chemistry, said: “It is now well over twenty years since the first demonstration that molecularly imprinted polymers can be used as the recognition material in assays for clinically significant drugs. At that time, seminal work clearly illustrated the principle, but the assays described were unlikely to present a threat to established methods which relied on antibodies.

Image Credit:  University of Leicester

Recent News