A graphene nanocomposite turbocharge for lithium batteries

Lithium-ion batteries are the ultimate benchmark when it comes to mobile phones, tablet devices, and electric cars. Their storage capacity and power density are far superior to other rechargeable battery systems. Despite all the progress that has been made, however, smartphone batteries only last a day and electric cars need hours to be recharged. Scientists are therefore working on ways to improve the power densities and charging rates of all-round batteries.

“An important factor is the anode material,” explains Dina Fattakhova-Rohlfing from the Institute of Energy and Climate Research (IEK-1).

“In principle, anodes based on tin dioxide can achieve much higher specific capacities, and therefore store more energy, than the carbon anodes currently being used. They have the ability to absorb more lithium ions,” says Fattakhova-Rohlfing. “Pure tin oxide, however, exhibits very weak cycle stability – the storage capability of the batteries steadily decreases and they can only be recharged a few times. The volume of the anode changes with each charging and discharging cycle, which leads to it crumbling.”

One way of addressing this problem is hybrid materials or nanocomposites – composite materials that contain nanoparticles. The scientists developed a material comprising tin oxide nanoparticles enriched with antimony, on a base layer of graphene (“Making Ultrafast High-Capacity Anodes for Lithium-Ion Batteries via Antimony Doping of Nanosized Tin Oxide/Graphene Composites“).

The graphene basis aids the structural stability and conductivity of the material. The tin oxide particles are less than three nanometres in size and are directly “grown” on the graphene. The small size of the particle and its good contact with the graphene layer also improves its tolerance to volume changes – the lithium cell becomes more stable and lasts longer.

Read more at nanowerk.com

Image Credit:  Prof. Dina Fattakhova-Rohlfing

News This Week

Frank Boehm (NA CEO) signs with IOP for Book on Nanomedical Brain/Cloud Interface

NanoApps Medical Inc. CEO Frank Boehm has signed with IOP Publishing to produce Nanomedical Brain/Cloud Interface: Explorations and Implications - a book that will explore the notion of a nanomedically enabled Brain/Cloud Interface (B/CI). [...]

Who owns what in outer space?

In 2015 Congress passed a law to legalise mining in outer space—the first of its kind in the world. Firms that some day manage to mine asteroids for resources like water or precious metals [...]

Public, permissionless blockchains and the EU’s GDPR: The coming clash between technology and the law?

From a blog by VALID advisor Christian Sillaber, Senior Researcher on IT-Security The European Union’s General Data Protection Regulation (GDPR) came into effect on May 25, 2018. It is already clear that the new [...]

Women in Tech 2018: What the Statistics Tell Us

From an article by Ludmila Morozova-Buss on TechNative: Women have played a role in computer technology since its inception. Many credit Ava Lovelace as the first computer programmer, in a time before computers even existed, [...]

Minimalist biostructures designed to create nanomaterials

Researchers of the Institute of Biotechnology and Biomedicine (IBB-UAB) have generated four peptides, molecules smaller than proteins, capable of self-assembling in a controlled manner to form nanomaterials. The research, published in the journal ACS [...]

Nanophotonic System Translates Molecules into Bar Codes

EPFL scientists have developed a unique system that can be used for detecting and analyzing molecules with very a level of high precision and without using any bulky equipment. This latest development paves the [...]

Squeezing light at the nanoscale

Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new technique to squeeze infrared light into ultra-confined spaces, generating an intense, nanoscale antenna that could be [...]

Breakthrough in controlling DNA-based robots

Researchers have devised a magnetic control system to make tiny DNA-based robots move on demand -- and much faster than recently possible. In the journal Nature Communications, Carlos Castro and Ratnasingham Sooryakumar and their [...]

2018-06-12T13:34:13+00:00

Leave A Comment